Advertisement

A novel magneto-mechanical viscoelastic standard device for the calibration of rotational rheometers

  • Philipp BohrEmail author
  • Heiko Stettin
  • Jörg Läuger
Original Contribution
  • 46 Downloads

Abstract

We introduce a novel magneto-mechanical device to simulate viscoelastic substances in a rotational rheometer. The device can serve as a calibration standard to calibrate the measurement of the viscous and elastic properties of a substance or as a benchmark for measuring methods and device testing procedures. We present the mechanical and rheological backgrounds of this device, describe its design, and present the results from basic rheometric measurements, i.e., frequency sweeps, creep recovery, and cessation-of-shear experiments. We conclude with remarks on possibilities of extending the concept by modeling a broader spectrum of substances and the application in dynamic mechanical analyzers.

Keywords

Rheometry Standards Calibration Viscoelasticity 

Notes

Acknowledgments

We wish to express our gratitude to Christopher Giehl for providing the illustrations.

References

  1. Baravian C, Quemada D (1998) Correction of instrumental inertia effects in controlled stress rheometry. Eur Phys J Appl Phys 2:189–195CrossRefGoogle Scholar
  2. Barnes HA, Bell D (2003) Controlled-stress rotational rheometry: an historical review. Korea-Aust Rheol J 15(4):187–196Google Scholar
  3. Batchelor GK (1951) Note on a class of solutions of the navier-stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4(1):29–41CrossRefGoogle Scholar
  4. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Wiley, New YorkGoogle Scholar
  5. Byars JA, Öztekin A, Brown RA, McKinley GH (1994) Spiral instabilities in the flow of highly elastic fluids between rotating parallel disks. J Fluid Mech 271:173–218CrossRefGoogle Scholar
  6. Cain JJ, Denn MM (1988) Multiplicities and instabilities in film blowing. Polym Eng Sci 28:1527–1541CrossRefGoogle Scholar
  7. Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking pdms with imbalanced stoichiometry. J Rheol 31(8):683–697CrossRefGoogle Scholar
  8. Denn MM, Avenas P (1975) Mechanics of steady spinning of a viscoelastic liquid. AIChE J 21:791–799CrossRefGoogle Scholar
  9. Dinkgreve M, Denn M, Bonn D (2017) ”everything flows?”: elastic effects on startup flows of yield-stress fluids. Rheol Acta 56:189–194CrossRefGoogle Scholar
  10. Evans RLM, Tassieri M, Auhl D, Waigh T (2009) Direct conversion of rheological compliance measurements into storage and loss moduli. Phys Rev E 80:12,501–12,505CrossRefGoogle Scholar
  11. Ewoldt RH, McKinley GH (2007) Creep ringing in rheometry or how to deal with oft-discarded data in step stress tests. Rheol Bull 76(1):4Google Scholar
  12. Giesekus H (1994) Phänomenologische Rheologie. Springer, HeidelbergCrossRefGoogle Scholar
  13. Goudoulas TB, Germann N (2016) Viscoelastic properties of polyacrylamide solutions from creep ringing data. J Rheol 60(3):491–502CrossRefGoogle Scholar
  14. Groisman A, Steinberg V (2000) Elastic turbulence in a polymer solution. Nature 405:53–55CrossRefGoogle Scholar
  15. Hürlimann H P, Knappe W (1972) Der zusammenhang zwischen der dehnspannung von kunststoffschmelzen im düseneinlauf und im schmelzbruch. Rheol Acta 11:292–301CrossRefGoogle Scholar
  16. Kielhorn L, Colby R, Han C (2000) Relaxation behavior of polymer blends after the cessation of shear. Macromolecules 33:2486–2496CrossRefGoogle Scholar
  17. Klemuk SA, Titze IR (2009) Determining motor inertia of a stress-controlled rheometer. J Rheol 53 (4):765–783CrossRefGoogle Scholar
  18. Kármán T (1921) üBer laminare und turbulente reibung. J Appl Math Mech 1(4):233–252Google Scholar
  19. Kwon M, Lee S, Lee S, Cho K (2016) Direct conversion of creep data to dynamic moduli. J Rheol 60(6):1181–1197CrossRefGoogle Scholar
  20. Larson RG, Shaqfeh ES, Muller SJ (1990) A purely elastic instability in taylor-couette flow. J Fluid Mech 218:573–600CrossRefGoogle Scholar
  21. Läuger J, Heyer P (2007) Validation of empirical rules for a standard polymer solution by different rheological tests. Ann T Nord Rheol Soc 15Google Scholar
  22. Läuger J, Stettin H (2016) Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. J Rheol 60:393CrossRefGoogle Scholar
  23. Läuger J, Heyer P, Snyder C (2005) Discrepancies in the specified data and presentation of a new data set for nist standard reference material®; srm 2490. In: 77th annual meeting of the American society of rheology, Vancouver, CanadaGoogle Scholar
  24. Macosko CW (1994) Rheology: Principles, measurements and applications. Wiley, New YorkGoogle Scholar
  25. Petrie CJS, Denn MM (1976) Instabilities in polymer processing. AIChE J 22:209–236CrossRefGoogle Scholar
  26. Reiner M (1964) The deborah number. Phys Today 17:62CrossRefGoogle Scholar
  27. Schiamberg BA, Shereda LT, Hu H, Larson RG (2006) Transitional pathway to elastic turbulence in torsional, parallel-plate flow of a polymer solution. J Fluid Mech 554:191–216CrossRefGoogle Scholar
  28. Schultheisz CR, Leigh SD (2002) Certification of the rheological behavior of srm 2490, polyisobutylene dissolved in 2,6,10,14-tetramethylpentadecane. Technical report. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  29. Smith RS, Glasscock JA (2004) Measurements of the rheological properties of standard reference material 2490 using an in-line micro-fourier rheometer. Korea-Aust Rheol J 16(4):169–173Google Scholar
  30. Tassieri M (2018) i-rheo gt: Transforming from time to frequency domain without artifacts. Macromolecules 51:5055–5068CrossRefGoogle Scholar
  31. Titze IR, Klemuk SA, Gray S (2004) Methodology for rheological testing of engineered biomaterials at low audio frequencies. J Acoust Soc Am 115(1):392–401CrossRefGoogle Scholar
  32. Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40:613–631CrossRefGoogle Scholar
  33. Walker L, Wagner N (1995) The rheology of highly concentrated pblg solutions. J Rheol 39:925–952CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anton Paar Germany GmbH, R&D - RheometryOstfildernGermany

Personalised recommendations