Advertisement

Yield stress and rheology of a self-associating chitosan solution

  • Nina M. GasbarroEmail author
  • Michael J. Solomon
Original Contribution
  • 90 Downloads

Abstract

We report that aqueous solutions of high molecular weight chitosan display a regime of shear thinning at low shear rates that is consistent with the existence of an apparent yield stress. The concentration-dependent scaling of the apparent yield stress, σ0(c)~c2.8±0.2 in the concentration range c = 7.50–65.0 mg/mL, is consistent with a solution microstructure of fractal clusters. Dynamic light scattering measurements at high concentration indicate extremely slow microdynamics, consistent with the presence of a structured network or glassy fluid. At shear rates above yielding, a constant viscosity plateau was observed with concentration-dependent scaling below the gel point consistent with existing models of entangled and associating polymers. The addition of urea, a hydrogen bond and hydrophobic interaction disrupter, did not change the reported concentration-dependent scaling of the apparent yield stress or the plateau viscosity but did weaken the apparent yield stress magnitude by ~ 30% on average.

Keywords

Biopolymer Flow-sensitive viscosity Yield stress Scattering Rheology Shear viscosity 

Notes

Acknowledgments

The authors acknowledge Anton Paar for the availability of the MCR 702 Twin Drive rheometer through an instrument loan program.

Funding information

Financial support for this research was provided by NSF (grant number NSF DMR 1408817).

Supplementary material

397_2019_1173_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2.19 mb)

References

  1. Agulló E, Rodríguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3(10):521–530CrossRefGoogle Scholar
  2. Aranaz I, Acosta N, Civera C et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 10(2):213–238CrossRefGoogle Scholar
  3. Augusto de Melo Marques F, Angelini R, Zaccarelli E et al (2015) Structural and microscopic relaxations in a colloidal glass. Soft Matter 11(3):466–471CrossRefGoogle Scholar
  4. Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Nonnewton Fluid Mech 56(3):221–251CrossRefGoogle Scholar
  5. Berth G, Dautzenberg H (2002) The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr Polym 47(1):39–51CrossRefGoogle Scholar
  6. Bonn D, Denn MM, Berthier L et al (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89(3):035005(40)CrossRefGoogle Scholar
  7. Buhler E, Rinaudo M (2000) Structural and dynamical properties of semirigid polyelectrolyte solutions: a light-scattering study. Macromolecules 33:2098–2106CrossRefGoogle Scholar
  8. Carpineti M, Giglio M (1993) Transition from semiorder to disorder in the aggregation of dense colloidal solusions. Phys Rev Lett 70(24):3828–3831CrossRefGoogle Scholar
  9. Carreau PJ, Cho J, Heuzey M (2006) Effect of urea on solution behavior and heat-induced gelation of chitosan-b-glycerophosphate. Carbohydr Polym 63:507–518CrossRefGoogle Scholar
  10. Chen RH, Tsaih ML (2000) Urea-induced conformational changes of chitosan molecules and the shift of break point of Mark-Houwink equation by increasing urea concentration. J Appl Polym Sci 75:452–457CrossRefGoogle Scholar
  11. Cho J, Heuzey M, Bégin A, Carreau PJ (2006a) Viscoelastic properties of chitosan solutions: effect of concentration and ionic strength. J Food Eng 74(4):500–515CrossRefGoogle Scholar
  12. Cho J, Heuzey MC, Bégin A, Carreau PJ (2006b) Effect of urea on solution behavior and heat-induced gelationof chitosan-β-glycerophosphate. Carbohydr Polym 63(4):507–518CrossRefGoogle Scholar
  13. Cipelletti L, Ramos L, Manley S et al (2003) Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss 123:237–251CrossRefGoogle Scholar
  14. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70CrossRefGoogle Scholar
  15. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan - a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  16. de Gennes P-G (1985) Scaling concepts in polymer physics, 2nd edn. Cornell University PressGoogle Scholar
  17. de Morais WA, Pereira MR, Fonseca JLC (2012) Characterization of gelification of chitosan solutions by dynamic light scattering. Carbohydr Polym 87(4):2376–2380CrossRefGoogle Scholar
  18. Desbrières J (2002) Viscosity of semiflexible chitosan solutions: influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules 3:342–349CrossRefGoogle Scholar
  19. Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. macromolecules 28(6):1859–1871CrossRefGoogle Scholar
  20. Doench I, Torres-Ramos MEW, Montembault A et al (2018) Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers 10(11):1202–1229CrossRefGoogle Scholar
  21. dos Santos ZM, Caroni ALPF, Pereira MR et al (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344(18):2591–2595CrossRefGoogle Scholar
  22. Eberle APR, Castañeda-Priego R, Kim JM, Wagner NJ (2012) Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir 28(3):1866–1878CrossRefGoogle Scholar
  23. Esquenet C, Terech P, Boué F, Buhler E (2004) Structural and rheological properties of hydrophobically modified polysaccharide associative networks. Langmuir 20(9):3583–3592CrossRefGoogle Scholar
  24. Ganesan M, Knier S, Younger JG, Solomon MJ (2016) Associative and entanglement contributions to the solution rheology of a bacterial polysaccharide. Macromolecules 49(21):8313–8321CrossRefGoogle Scholar
  25. Heo Y, Larson RG (2005) The scaling of zero-shear viscosities of semidilute polymer solutions with concentration. J Rheol 49(5):1117–1128CrossRefGoogle Scholar
  26. Horinaka JI, Urabayashi Y, Takigawa T, Ohmae M (2013) Entanglement network of chitin and chitosan in ionic liquid solutions. J Appl Polym Sci 130(4):2439–2443CrossRefGoogle Scholar
  27. Hwang JK, Shin HH (2001) Rheological properties of chitosan solutions. Korea-Australia Rheol J 12:175–179Google Scholar
  28. Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21CrossRefGoogle Scholar
  29. Jin L, Shangguan Y, Ye T et al (2013) Shear-induced self-thickening in chitosan-grafted polyacrylamide aqueous solution. Soft Matter 9(6):1835–1843CrossRefGoogle Scholar
  30. Joosten JGH, Geladé ETF, Pusey PN (1990) Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels. Phys Rev A 42(4):2161–2175CrossRefGoogle Scholar
  31. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11CrossRefGoogle Scholar
  32. Kjøniksen A-L, Iversen C, Nyström B et al (1998) Light scattering study of semidilute aqueous systems of chitosan and hydrophobically modified chitosans. Macromolecules 31(23):8142–8148CrossRefGoogle Scholar
  33. Korchagina EV, Philippova OE (2010) Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules. Biomacromolecules 11(12):3457–3466CrossRefGoogle Scholar
  34. Koziol M, Fischer K, Seiffert S (2019) Origin of the low-frequency plateau and the light-scattering slow mode in semidilute poly(ethylene glycol) solutions. Soft Matter 15:2666–2676CrossRefGoogle Scholar
  35. Krall AH, Weitz DA (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80(4):778–781CrossRefGoogle Scholar
  36. Lapasin R, Pricl S (2012) Rheology of polysaccharide systems. In: Rheology of industrial polysaccharides: theory and applications. Springer Science & Business Media, pp 250–494Google Scholar
  37. Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662CrossRefGoogle Scholar
  38. Lucchesi L, Xie H (2015) Wound dressing devices and methodsGoogle Scholar
  39. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2004) Steady-shear rheology of concentrated chitosan solutions. J Texture Stud 35:53–74CrossRefGoogle Scholar
  40. Mohraz A, Solomon MJ (2005) Orientation and rupture of fractal colloidal gels during start-up of steady shear flow. J Rheol 49(3):657–681CrossRefGoogle Scholar
  41. Møller PCF, Fall A, Bonn D (2009) Origin of apparent viscosity in yield stress fluids below yielding. EPL 87(3):38004CrossRefGoogle Scholar
  42. Muzzarelli RAA (1993) Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr Polym 20:7–16CrossRefGoogle Scholar
  43. Nyström B, Kjøniksen A-L, Iversen C (1999) Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity. Adv Colloid Interf Sci 79:81–103CrossRefGoogle Scholar
  44. Park JW, Park K-H (1983) Acid-base equilibria and related properties of chitosan. Bull Kor Chem Soc 4(2):68–72Google Scholar
  45. Payet L, Ponton A, Grossiord JL, Agnely F (2010) Structural and rheological properties of chitosan semi-interpenetrated networks. Eur Phys J E Soft Matter 32:109–118CrossRefGoogle Scholar
  46. Philippova OE, Korchagina EV (2012) Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 54(7):552–572CrossRefGoogle Scholar
  47. Philippova OE, Volkov EV, Sitnikova NL et al (2001) Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2(2):483–490CrossRefGoogle Scholar
  48. Philippova OE, Korchagina EV, Volkov EV et al (2012) Aggregation of some water-soluble derivatives of chitin in aqueous solutions: role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr Polym 87(1):687–694CrossRefGoogle Scholar
  49. Piau JM (2007) Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges. J Nonnewton Fluid Mech 144(1):1–29CrossRefGoogle Scholar
  50. Piau JM, Dorget M, Palierne JF, Pouchelon A (2002) Shear elasticity and yield stress of silica–silicone physical gels: fractal approach. J Rheol 43(2):305–314CrossRefGoogle Scholar
  51. Popa-Nita S, Alcouffe P, Rochas C et al (2010) Continuum of structural organization from chitosan solutions to derived physical forms. Biomacromolecules 11(1):6–12CrossRefGoogle Scholar
  52. Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465CrossRefGoogle Scholar
  53. Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28CrossRefGoogle Scholar
  54. Ren SZ, Sorensen CM (1993) Relaxation in gels: analogies to alpha and beta relaxation in glasses. Phys Rev Lett 70(11):1727–1730CrossRefGoogle Scholar
  55. Rodd AB, Dunstan DE, Boger DV (2000) Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 42:159–174CrossRefGoogle Scholar
  56. Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47:67–77CrossRefGoogle Scholar
  57. Rubinstein M, Colby RH (2003) Polymer physics, 1st edn, OxfordGoogle Scholar
  58. Rubinstein M, Semenov AN (2001) Dynamics of entangled solutions of associating polymers. Macromolecules 34(4):1058–1068CrossRefGoogle Scholar
  59. Semenov AN, Rubinstein M (2002) Dynamics of entangled associating polymers with large aggregates. Macromolecules 35(12):4821–4837CrossRefGoogle Scholar
  60. Sogias IA, Khutoryanskiy VV, Williams AC (2010) Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys 211(4):426–433CrossRefGoogle Scholar
  61. Taghizadeh SM, Davari G (2006) Preparation, characterization, and swelling behavior of N-acetylated and deacetylated chitosans. Carbohydr Polym 64:9–15CrossRefGoogle Scholar
  62. Tikhonov VE, Stepnova EA, Babak VG et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr Polym 64(1):66–72CrossRefGoogle Scholar
  63. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575CrossRefGoogle Scholar
  64. Tsaih ML, Chen RH (1997) Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int J Biol Macromol 20(3):233–240CrossRefGoogle Scholar
  65. van Megen W, Underwood SM, Pusey PN (1991) Nonergodicity parameters of colloidal glasses. Phys Rev Lett 67(12):1586–1589CrossRefGoogle Scholar
  66. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382CrossRefGoogle Scholar
  67. Yi H, Wu L-Q, Bentley WE et al (2005) Biofabrication with chitosan. Biomacromolecules 6(6):2881–2894CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations