Advertisement

Rheologica Acta

, Volume 58, Issue 5, pp 231–239 | Cite as

Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 2: strain rate-dependent two-fluid behavior

  • Jie Song
  • Marco Caggioni
  • Todd M. Squires
  • James F. Gilchrist
  • Stuart W. Prescott
  • Patrick T. SpicerEmail author
Original Contribution
  • 84 Downloads

Abstract

Complex fluids are widely used in formulated products to impart rheological properties like stability, performance, and aesthetics. Yield stress fluids are a particularly important example, enabling applications like particle suspension, surface coating, and therapeutic delivery. Recent work has shown that particle suspension in yield stress fluids can be a strong function of yielding and flow heterogeneities, especially in anisotropic fiber dispersions. This work uses a microbubble technique to study the deformation before and during yielding of microfibrous cellulose suspensions. We note significant variations in suspension performance as a result of fiber rearrangement and heterogeneities. Strong strain rate dependencies are found to vary local network yield strength, and confocal microscopy quantifies structural reinforcement and deformation rate effects. The observed behavior indicates a two-fluid interpretation may help interpret sparse network flow and suspension properties.

Keywords

Gels Yielding Microstructure rearrangement Two-fluid model Microfibrous cellulose Strain rate dependent 

Notes

Acknowledgements

We thank the BioMedical Imaging Facility (BMIF) and the Mark Wainwright Analytical Centre (MWAC) at UNSW for confocal microscopy imaging and support.

Funding information

We received financial support from the Procter & Gamble Company and the UNSW Major Research Equipment Infrastructure Initiative (MREII 2014). This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958

References

  1. Bouzid M, Del Gado E (2018) Network topology in soft gels: hardening and softening materials. Langmuir 34(3):773–781. 1710.02007CrossRefGoogle Scholar
  2. Brochard F, De Gennes P (1977) Dynamical scaling for polymers in theta solvents. Macromolecules 10(5):1157–1161CrossRefGoogle Scholar
  3. Buscall R, Mills P, Stewart R, Sutton D, White L, Yates G (1987) The rheology of strongly-flocculated suspensions. J Non-Newtonian Fluid Mech 24(2):183–202CrossRefGoogle Scholar
  4. de Cagny HC, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, MacKintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(21):217,802CrossRefGoogle Scholar
  5. Denn MM, Bonn D (2011) Issues in the flow of yield-stress liquids. Rheol Acta 50(4):307–315CrossRefGoogle Scholar
  6. Emady H, Caggioni M, Spicer P (2013) Colloidal microstructure effects on particle sedimentation in yield stress fluids. J Rheol 57(6):1761–1772CrossRefGoogle Scholar
  7. Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9(6):1852–1863CrossRefGoogle Scholar
  8. Fourmentin M, Ovarlez G, Faure P, Peter U, Lesueur D, Daviller D, Coussot P (2015) Rheology of lime paste: a comparison with cement paste. Rheol Acta 54(7):647–656CrossRefGoogle Scholar
  9. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004a) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305CrossRefGoogle Scholar
  10. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004b) Scaling of f-actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 188(18):102Google Scholar
  11. Gittes F, Schnurr B, Olmsted P, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79(17):3286CrossRefGoogle Scholar
  12. Hough L, Islam M, Hammouda B, Yodh A, Heiney P (2006) Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett 6(2):313–317CrossRefGoogle Scholar
  13. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocessing Biotechniques 2014:1–10Google Scholar
  14. Levine AJ, Lubensky T (2001) Response function of a sphere in a viscoelastic two-fluid medium. Phys Rev E 63(4):041,510CrossRefGoogle Scholar
  15. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes J, Gidley M (2014) Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15(6):2274–2284CrossRefGoogle Scholar
  16. Manley S, Skotheim J, Mahadevan L, Weitz D (2005) Gravitational collapse of colloidal gels. Phys Rev Lett 94(21):1–4CrossRefGoogle Scholar
  17. Meng F, Terentjev EM (2017) Theory of semiflexible filaments and networks. Polymers 9(2):52CrossRefGoogle Scholar
  18. Møller PC, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283CrossRefGoogle Scholar
  19. Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose iv. application to processed foods. Food Hydrocolloids 6(6):503– 511CrossRefGoogle Scholar
  20. Olsen BD, Kornfield JA, Tirrell DA (2010) Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43(21):9094–9099CrossRefGoogle Scholar
  21. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  22. Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138,301CrossRefGoogle Scholar
  23. Quinto-Su P, Huang X, Gonzalez-Avila S, Wu T, Ohl C (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014,501CrossRefGoogle Scholar
  24. Ronceray P, Broedersz CP, Lenz M (2016) Fiber networks amplify active stress. 201514208. Proc Natl Acad Sci 113(11):2827–2832CrossRefGoogle Scholar
  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  26. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400CrossRefGoogle Scholar
  27. Song J, Caggioni M, Squires TM, Gilchrist J, Prescott SW, Spicer PT (2019) Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1. Bubble rheometer studies. Rheol Acta.  https://doi.org/10.1007/s00397-019-01140-4
  28. Sprakel J, Lindström SB, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106(24):248,303CrossRefGoogle Scholar
  29. Vahabi M, Vos BE, De Cagny HC, Bonn D, Koenderink GH, Mackintosh FC (2018) Normal stresses in semiflexible polymer hydrogels. Phys Rev E 97(3):32418. 1712.02733CrossRefGoogle Scholar
  30. Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP (2014) Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir 30(44):13362–13368CrossRefGoogle Scholar
  31. Wilkins GM, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25(16):8951–8959CrossRefGoogle Scholar
  32. Xu X, Safran S A (2017) Compressive elasticity of polydisperse biopolymer gels. Phys Rev E 95(5):052,415CrossRefGoogle Scholar
  33. Young PM, Traini D, Ong HX, Granieri A, Zhu B, Scalia S, Song J, Spicer PT (2017) Novel nano-cellulose excipient for generating non-Newtonian droplets for targeted nasal drug delivery. Drug Dev Ind Pharm 43(10):1729–1733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Song
    • 1
  • Marco Caggioni
    • 2
  • Todd M. Squires
    • 3
  • James F. Gilchrist
    • 4
  • Stuart W. Prescott
    • 1
  • Patrick T. Spicer
    • 1
    Email author
  1. 1.Complex Fluids Group, Chemical EngineeringUNSW AustraliaSydneyAustralia
  2. 2.Microstructured FluidsProcter & Gamble Co.West ChesterUSA
  3. 3.Chemical EngineeringUC Santa BarbaraSanta BarbaraUSA
  4. 4.Chemical and Biomolecular EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations