Rheologica Acta

, Volume 58, Issue 3–4, pp 183–192 | Cite as

Influence of interfacial condition on rheological instability behavior of UHMWPE/HDPE/nano-SiO2 blends in capillary extrusion

  • Lichao Liu
  • Fei Wang
  • Ping XueEmail author
  • Suwei Wang
Original Contribution


In this study, rheological behaviors and capillary extrusion flow instabilities of ultra-high molecular weight polyethylene (UHMWPE)/high-density polyethylene (HDPE)/SiO2 composites containing modified nano-SiO2 or pure nano-SiO2 are investigated. Effects of interfacial conditions between the dispersed nano-SiO2 phase and PE matrix on rheological behaviors are analyzed. The results show that modified nano-SiO2 in the PE matrix has a relatively strong interfacial interaction with the polymer chains compared with pure nano-SiO2, thus causing a more pronounced shear thinning behavior and reducing extrudate swell during capillary extrusion. Nanocomposite extrudates experience the transition of smooth- sharkskin- oscillating distortion—overall melt fracture with the increase of shear rate (or shear stress). The interfacial interaction allows a more storage of elastic energy as the melt flow through the die, resulting in sharkskin distortion and oscillating distortion to occur prematurely at critical shear rates. It also restricts the elastic recovery of the melt after leaving the die, thus delaying sharkskin distortion under shear stress. At high shear rates, the modified nano-SiO2 particles begin to roll, and some of the unmodified particles move and embed to the wall. It is believed that the interfacial adsorption effect and the wall-slip effect of nanoparticles exist simultaneously in the whole extrusion process.


Rheology Melt fracture UHMWPE Nano-silica Interfacial condition 


Funding information

The authors would like to acknowledge the support of the National Natural Science Foundation of China (No. 51673021).


  1. Allal A, Lavernhe A, Vergnes B, Marin G (2006) Relationships between molecular structure and sharkskin defect for linear polymers. J Non-Newtonian Fluid Mech 134:127–135. CrossRefGoogle Scholar
  2. Ansari M, Hatzikiriakos SG, Sukhadia AM, Rohlfing DC (2012a) Melt fracture of two broad molecular weight distribution high-density polyethylenes. Polym Eng Sci 52(4):795–804. CrossRefGoogle Scholar
  3. Ansari M, Inn YW, Sukhadia AM, DesLauriers PJ, Hatzikiriakos SG (2012b) Melt fracture of HDPEs: metallocene versus Zieglere–Natta and broad MWD effects. Polymer 53(19):4195–4201. CrossRefGoogle Scholar
  4. Ansari M, Derakhshandeh M, Doufas AA, Tomkovic T, Hatzikiriakos SG (2018) The role of microstructure on melt fracture of linear low density polyethylenes. Polym Test 67:266–274. CrossRefGoogle Scholar
  5. Barone J, Wang SQ (1999) Flow birefringence study of sharkskin and stress relaxation in polybutadiene melts. Rheol Acta 38:404–414. CrossRefGoogle Scholar
  6. Barone JR, Plucktaveesak N, Wang SQ (1998) Interfacial molecular instability mechanism for sharkskin phenomenon in capillary extrusion of linear polyethylenes. J Rheol 42:813–832. CrossRefGoogle Scholar
  7. Bigio D, Meillon MG, Kharchenko SB, Morgan D, Zhou H, Oriani SR, Macosko CW, Migler KB (2005) Coating kinetics of fluoropolymer processing aids for sharkskin elimination: the role of droplet size. J Non-Newtonian Fluid Mech 131:22–31. CrossRefGoogle Scholar
  8. Cai LF, Huang XB, Rong MZ, Ruan WH, Zhang MQ (2006) Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 47(20):7043–7050. CrossRefGoogle Scholar
  9. Chen KP, Joseph DD (1992) Elastic short wave instability in extrusion flows of viscoelastic liquids. J Non-Newtonian Fluid Mech 42(1–2):189–211. CrossRefGoogle Scholar
  10. Chen X, Yoon K, Burger C, Sics I, Fang D, Hsiao BS, Chu B (2005) In-situ X-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films. Macromolecules 38:3883–3893. CrossRefGoogle Scholar
  11. Cogswell FN (1977) Stretching flow instabilities at the exits of extrusion dies. J Non-Newtonian Fluid Mech 2:37–47. CrossRefGoogle Scholar
  12. Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265–287. CrossRefGoogle Scholar
  13. Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci 37:624–643. CrossRefGoogle Scholar
  14. Hatzikiriakos SG, Dealy JM (1993) Effects of interfacial conditions on wall slip and sharkskin melt fracture of HDPE. Int Polym Process 8(1):36–43. CrossRefGoogle Scholar
  15. Hatzikiriakos SG, Migler KB (2004) Polymer processing instabilities: control and understanding. Marcel Dekker, New YorkCrossRefGoogle Scholar
  16. Hatzikiriakos SG, Kazatchkov IB, Vlassopoulos D (1997) Interfacial phenomena in the capillary extrusion of metallocene polyethylenes. J Rheol 41:1299–1316. CrossRefGoogle Scholar
  17. Inn YW (2013) Melt fracture and wall slip of metallocene-catalyzed bimodal polyethylenes in capillary flow. J Rheol 57:393. CrossRefGoogle Scholar
  18. Jaggi HS, Satapathy BK, Ray AR (2014) Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J Polym Res 21:482. CrossRefGoogle Scholar
  19. Joseph DD (1997) Steep wave fronts on extrudates of polymer melts and solutions: lubrication layers and boundary lubrication. J Non-Newtonian Fluid Mech 70(3):187–203. CrossRefGoogle Scholar
  20. Ketata M, Ayadi A, Elkissi N, Bradai C (2017) Effect of rheological and physical properties on mitigation of melt fracture instability during extrusion of polymer melts through a radial flow die. Rheol Acta 56(4):341–350. CrossRefGoogle Scholar
  21. Khasraghi SS, Rezaei M (2015) Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites. J Thermoplast Compos Mater 28(3):305–326. CrossRefGoogle Scholar
  22. Kim J, Kim DH, Son Y (2009) Rheological properties of long chain branched polyethylene melts at high shear rate. Polymer 50:4998–5001. CrossRefGoogle Scholar
  23. Lee H, Kim DH, Son Y (2006) Anomalous rheological behavior of polyethylene melts in the gross melt fracture regime in the capillary extrusion. Polymer 47:3929–3934. CrossRefGoogle Scholar
  24. Li Y, Yu J, Guo ZX (2002) The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization. J Appl Polym Sci 84:827. CrossRefGoogle Scholar
  25. Li Y, Yu J, Guo ZX (2003) The influence of interphase on nylon-6/nano-SiO2 composite materials obtained from in situ polymerization. Polym Int 52:981–986. CrossRefGoogle Scholar
  26. Li YM, Wang Y, Bai L, Zhou HLZ, Yang W, Yang MB (2011) Dynamic rheological behavior of HDPE/UHMWPE blends. J Macromol Sci B 50:1249–1259. CrossRefGoogle Scholar
  27. Lim KLK, Mohd Ishak ZA, Ishiaku US, Fuad AMY, Yusof AH, Czigany T, Pukanszky B, Ogunniyi DS (2005) High-density polyethylene/ultrahigh-molecular-weight polyethylene blend. I. The processing, thermal, and mechanical properties. J Appl Polym Sci 97:413–425. CrossRefGoogle Scholar
  28. Miller E, Rothstein JP (2004) Control of the sharkskin instability in the extrusion of polymer melts using induced temperature gradients. Rheol Acta 44:160–173. CrossRefGoogle Scholar
  29. Ong HL, Akil HM, Mohd Ishak ZA (2011) Surface-activated nanosilica treated with silane coupling agents/polypropylene composites: mechanical, morphological, and thermal studies. Polym Compos 32:1568–1583. CrossRefGoogle Scholar
  30. Palza H, Reznik B, Kappes M, Hennrich F, Naue IFC, Wilhelm M (2010) Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer 51:3753–3761. CrossRefGoogle Scholar
  31. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42(21):8759–8768. CrossRefGoogle Scholar
  32. Singh VP, Vimal KK, Kapur GS, Sharma S, Choudhary V (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res 23:43. CrossRefGoogle Scholar
  33. Stojanovic D, Orlovic A, Markovic S, Radmilovic V, Uskokovic PS, Aleksic R (2009) Nanosilica/PMMA composites obtained by the modification of silica nanoparticles in a supercritical carbon dioxide–ethanol mixture. J Mater Sci 44:6223–6232. CrossRefGoogle Scholar
  34. Tam TY, Aminuddin N, Young JA (2013) Melt spinning blends of UHMWPE and HDPE and fibers made therefrom. Patent 8426510, USAGoogle Scholar
  35. Tian G, Liu J, Sun T, Wang X, Wang X, Hu H, Li C, Dong X, Wang D (2018) The effects of carbon materials with different dimensionalities on the flow instabilities of LLDPE (linear low density polyethylene). Polymer 142:144–154. CrossRefGoogle Scholar
  36. Vega JF, Expósito MT, Otegui J, Martínez-Salazar J (2011) Eliminating sharkskin distortion in polyethylene extrusion via a molecular route. J Rheol 55:855–873. CrossRefGoogle Scholar
  37. Wang SQ, Drda PA, Inn YW (1996) Exploring molecular origins of sharkskin, partial slip, and slope change in flow curves of linear low density polyethylene. J Rheol 40:875–897. CrossRefGoogle Scholar
  38. Wang X, Wu Q, Qi Z (2003) Unusual rheology behaviour of ultra high molecular weight polyethylene/kaolin composites prepared via polymerization-filling. Polym Int 52:1078–1082. CrossRefGoogle Scholar
  39. Wu QY, Wu JA (2014) Polymer rheology, 2nd edn. Higher Education Press, BeijingGoogle Scholar
  40. Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos Sci Technol 65:635–645. CrossRefGoogle Scholar
  41. Xu H, Lele A, Rastogi S (2011) The influence of carbon-based nanofillers on the melt flow singularity of linear polyethylene. Polymer 52:3163–3174. CrossRefGoogle Scholar
  42. Xue Y, Wu W, Jacobs O, Schädel B (2006) Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test 4:221–229. CrossRefGoogle Scholar
  43. Zhang Q, Lippits DR, Rastogi S (2006) Dispersion and rheological aspects of SWNTs in ultrahigh molecular weight polyethylene. Macromolecules 39:658–666. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Plastic Machinery and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.School of Material and Mechanical EngineeringBeijing Technology and Business UniversityBeijingChina

Personalised recommendations