A new ultrasonic rheometer for space exploration in lander missions

  • Michele SchirruEmail author
  • Robert Dwyer-Joyce
  • Laura Vergoz
Original Contribution


Viscosity is a fundamental characteristic of liquid and viscoelastic materials. Viscosity measurements can give an insight in the mechanics and chemistry of biotic and geophysical samples; therefore, lander exploration of extra-terrestrial planets will benefit from an integrated viscometer. However, conventional viscometers are unsuitable for space missions. A novel miniaturised ultrasonic sensor is here presented as a rheometer for the in situ analysis of viscoelastic samples in extra-terrestrial lander missions. The measurement accuracy of the ultrasonic sensor was compared against a conventional viscometer for the measurement of aqueous solutions of L- and D-amino acids, with concentrations ranging from 1 to 10% (mass/volume). The instrument measured the viscosity of the aqueous solutions with a precision of 10% in a frequency range of 1.8 to 13.5 MHz. The instrument was further used to measure the viscosity of solutions of D-serine and L-serine 10% in water at sub-zero temperatures. Their viscosity was measured at the freezing point, demonstrating that this new sensor can provide innovative means for the study of ice rheology in situ. The compact dimensions of this sensor and the high precision of the measurements make it an ideal tool for in situ mechanical characterisation of biotic and geological samples in alien worlds.


Viscosity Ice Amino acids Ultrasound Lander mission Space exploration 



Shear viscosity (mPas)


Matching layer wavenumber (1/m)


Matching layer thickness (m)


Fluid impedance (Rayl)


Matching layer impedance (Rayl)


Solid impedance (Rayl)


Fluid density (kg/m3)


Frequency (Hz)


Quality factor


Quartz crystal microbalance


Reflection coefficient


Penetration depth (nm)


Rotational frequency (rad/s)


















The authors would like to thank the Engineering Research Society of the University of Sheffield for funding this research work.


  1. Boldock L (2017) The influence of stent geometry on haemodynamics and endothelialisation (Doctoral dissertation, University of Sheffield)Google Scholar
  2. Brekhovskikh L (2012) Waves in layered media, vol 16. ElsevierGoogle Scholar
  3. Brophy BH, Singh S, Chevrier VF (2015) Effect of sediment concentration on titan fluid dynamics. In: Lunar and planetary science conference, vol 46, p 1734Google Scholar
  4. Buckin V, Kudryashov E (2001) Ultrasonic shear wave rheology of weak particle gels. Adv Colloid Interf Sci 89:401–422CrossRefGoogle Scholar
  5. Dhar L, Rogers JA, Nelson KA, Trusell F (1995) Moduli determination in polyimide film bilayer systems: prospects for depth profiling using impulsive stimulated thermal scattering. J Appl Phys 77(9):4431–4444CrossRefGoogle Scholar
  6. Europa Lander Study 2016 Report: Europa Lander Mission. JPL D-97667Google Scholar
  7. Fortes AD (2000) Exobiological implications of a possible ammonia–water ocean inside titan. Icarus 146(2):444–452CrossRefGoogle Scholar
  8. Franco EE, Adamowski JC, Higuti RT, Buiochi F (2008) Viscosity measurement of Newtonian liquids using the complex reflection coefficient. IEEE Trans Ultrason Ferroelectr Freq Control 55(10):2247–2253CrossRefGoogle Scholar
  9. Gokhale VJ, Sui Y, Rais-Zadeh M (2012) Novel uncooled detector based on gallium nitride micromechanical resonators. In: Infrared technology and applications XXXVIII, vol 8353. International Society for Optics and Photonics, p 835319Google Scholar
  10. Haefeli R (1952) Observations on the quasi-viscous behaviour of ice in a tunnel in the Z’Mutt glacier. J Glaciol 2(12):94–99CrossRefGoogle Scholar
  11. Harrison G, Barlow AJ (1981) 3. Dynamic viscosity measurement. In: Methods in experimental physics, vol. 19, pp 137-178. Academic PressGoogle Scholar
  12. Hergenrother PM (2003) The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Performa Polym 15(1):3–45CrossRefGoogle Scholar
  13. Huang K, Szlufarska I (2012) Friction and slip at the solid/liquid interface in vibrational systems. Langmuir 28(50):17302–17312CrossRefGoogle Scholar
  14. Jones EG, Lineweaver CH (2012) Using the phase diagram of liquid water to search for life. Aust J Earth Sci 59(2):253–262CrossRefGoogle Scholar
  15. Kazys R, Rekuviene R, Sliteris R, Mazeika L, Zukauskas E (2015) Ultrasonic technique for monitoring of liquid density variations. Rev Sci Instrum 86(1):015003CrossRefGoogle Scholar
  16. Kessler D, Roth PJ, Theato P (2009) Reactive surface coatings based on polysilsesquioxanes: controlled functionalization for specific protein immobilization. Langmuir 25(17):10068–10076CrossRefGoogle Scholar
  17. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of acoustics. Fundamentals of acoustics, 4th ed. In: Kinsler LE, Frey AR, Coppens AB, Sanders JV. Wiley-VCH, p 560. ISBN 0-471-84789-5Google Scholar
  18. Kumar Kannam S, Todd BD, Hansen JS, Daivis PJ (2012) Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations. J Chem Phys 136(2):024705CrossRefGoogle Scholar
  19. Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72(9):096601CrossRefGoogle Scholar
  20. Masaki T, Fukazawa T, Matsumoto S, Itami T, Yoda S (2005) Measurements of diffusion coefficients of metallic melt under microgravity—current status of the development of shear cell technique towards JEM on ISS. Meas Sci Technol 16(2):327CrossRefGoogle Scholar
  21. Mason WP, Baker WO, McSkimin HJ, Heiss JH (1949) Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys Rev 75(6):936CrossRefGoogle Scholar
  22. McCarthy C, Savage HM, Koczynski T, Nielson MA (2016) An apparatus to measure frictional, anelastic, and viscous behavior in ice at temperate and planetary conditions. Rev Sci Instrum 87(5):055112CrossRefGoogle Scholar
  23. McKinnon WB (1999) Convective instability in Europa's floating ice shell. Geophys Res Lett 26(7):951–954CrossRefGoogle Scholar
  24. Mehl JW, Schmidt CL (1935) The conductivities of aqueous solutions of glycine, D, L-valine, and L-asparagine. J Gen Physiol 18(4):467CrossRefGoogle Scholar
  25. Meserschmidt M, Meyer M, Luger P (2003) Ultra-low-temperature X-ray data collection with a newly developed 0.1 mm Kapton-film cylinder for a closed-cycle helium cryostat. J Appl Crystallogr 36(6):1452–1454CrossRefGoogle Scholar
  26. Miyamoto H, Dohm JM, Baker VR, Beyer RA, Bourke M (2004) Dynamics of unusual debris flows on Martian sand dunes. Geophys Res Lett 31(13):L13701CrossRefGoogle Scholar
  27. Nadeau J, Lindensmith C, Deming JW, Fernandez VI, Stocker R (2016) Microbial morphology and motility as biosignatures for outer planet missions. Astrobiology 16(10):755–774CrossRefGoogle Scholar
  28. Ojakangas GW, Stevenson DJ (1989) Thermal state of an ice shell on Europa. Icarus 81(2):220–241CrossRefGoogle Scholar
  29. Pappalardo RT, Head JW, Greeley R, Sullivan RJ, Pilcher C, Schubert G, Goldsby DL (1998) Geological evidence for solid-state convection in Europa’s ice shell. Nature 391(6665):365CrossRefGoogle Scholar
  30. Pialucha T, Cawley P (1994) The detection of thin embedded layers using normal incidence ultrasound. Ultrasonics 32(6):431–440CrossRefGoogle Scholar
  31. Rani R, Kumar A, Sharma T, Saini B, Bamezai RK (2016) Interactions of L-aspartic acid with aqueous solution of 1, 2-propanediol at different temperatures: a volumetric, compressibility and viscometric approach. Acta Chim Slov 63(3):589–601CrossRefGoogle Scholar
  32. Reddyhoff T, Dwyer-Joyce R, Harper P (2006) Ultrasonic measurement of film thickness in mechanical seals. Seal Technol 2006(7):7–11CrossRefGoogle Scholar
  33. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409(6823):1092CrossRefGoogle Scholar
  34. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155(2):206–222CrossRefGoogle Scholar
  35. Schirru, M. (2017). Development of an ultrasonic sensing technique to measure lubricant viscosity in engine journal bearing in-situ. SpringerGoogle Scholar
  36. Schirru M, Mills R, Dwyer-Joyce R, Smith O, Sutton M (2015) Viscosity measurement in a lubricant film using an ultrasonically resonating matching layer. Tribol Lett 60(3):42CrossRefGoogle Scholar
  37. Schirru M, Li X, Cadeddu M, Dwyer-Joyce RS (2018) Development of a shear ultrasonic spectroscopy technique for the evaluation of viscoelastic fluid properties: theory and experimental validation. Ultrasonics.
  38. Shah VV, Balasubramaniam K (2000) Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave. Ultrasonics 38(9):921–927CrossRefGoogle Scholar
  39. Sheen SH, Chien HT, Raptis AC (1995) An in-line ultrasonic viscometer. In: Review of progress in quantitative nondestructive evaluation. Springer, Boston, pp 1151–1158Google Scholar
  40. Smolenskii GA, Krainik NN, Khuchua NP, Zhdanova VV, Mylnikova IE (1966) The curie temperature of LiNbO3. Phys Status Solidi B 13(2):309–314CrossRefGoogle Scholar
  41. Spencer JR, Tamppari LK, Martin TZ, Travis LD (1999) Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284(5419):1514–1516CrossRefGoogle Scholar
  42. Thirumaran S, & Sabu K (2009) Ultrasonic investigation of amino acids in aqueous sodium acetate mediumGoogle Scholar
  43. Van Wazer JR (1963) Viscosity and flow measurement: a laboratory handbook of rheology. Interscience Publishers, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michele Schirru
    • 1
    Email author
  • Robert Dwyer-Joyce
    • 1
  • Laura Vergoz
    • 2
  1. 1.The Leonardo Centre for Tribology, Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  2. 2.Department of Infection, Immunity and Cardiovascular Disease, The Medical SchoolUniversity of SheffieldSheffieldUK

Personalised recommendations