Advertisement

Rheologica Acta

, Volume 57, Issue 11, pp 705–728 | Cite as

Evaluating rheological models for human blood using steady state, transient, and oscillatory shear predictions

  • Matthew Armstrong
  • Jeffrey Horner
  • Michael Clark
  • Michael Deegan
  • Timothy Hill
  • Charles Keith
  • Lynne Mooradian
Original Contribution
  • 186 Downloads

Abstract

The rheological characterization of human blood, through modeling and analysis of steady state, transient, and oscillatory shear flows, has made tremendous progress recently. Due to the aggregation of red blood cells at low shear rates, many recent models for blood rheology include a structural, thixotropic component with one of the most recent attempts unifying this approach with a viscoelastic formulation. We will show how these models, along with proposed modifications to another recent structural, kinetic thixotropy model, can improve modeling predictions. Results are compared to the Maxwell-like Bautista-Manero-Puig model, the Oldroyd-8 inspired viscoelastic Anand-Kwack-Masud model, a viscoelastic-thixotropic model from Blackwell and Ewoldt, and the Herschel-Bulkley model. We explore the weaknesses of the legacy blood models and then demonstrate the efficacy of the newly improved models for modeling human blood steady state and transient shear rheology to predict oscillatory shear flow.

Keywords

Blood Thixotropy Small amplitude oscillatory shear Constitutive modeling Transient rheology 

Notes

Acknowledgements

The authors acknowledge the support and funding assistance from the U.S. Army, and the Department of Chemistry and Life Science, United States Military Academy. The authors also acknowledge support in the form of helpful and insightful discussions with Dr. Antony Beris and Dr. Norman Wagner from the University of Delaware, and Dr. Randy Ewoldt from the University of Illinois Urbana-Champaign. The views expressed herein are those of the authors and do not reflect the position of the United States Military Academy, the Department of the Army, or the Department of Defense. The authors acknowledge funding assistance from NSF CBET 1510837 which the blood was collected through.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control Vol AC-19(6)CrossRefGoogle Scholar
  2. Anand M, Kwack J, Masud A (2013) A new generalized Oldroyd-B model for the blood flow in complex geometries. Int J Eng Sci 72:78–88CrossRefGoogle Scholar
  3. Apostolidis AJ, Beris AN (2014) Modeling the blood rheology in steady-shear flows. J Rheol (1978-Present) 58(3):607–633CrossRefGoogle Scholar
  4. Apostolidis AJ, Beris AN (2015) The effect of cholesterol and triglycerides on the steady state rheology of blood. Rheol Acta 1:1–13Google Scholar
  5. Apostolidis AJ, Armstrong MJ, Beris AN (2015) Modeling of human blood rheology in transient shear flows. J Rheol 59:275–298CrossRefGoogle Scholar
  6. Apostolidis AJ, Moyer AP, Beris AN (2016) Non-Newtonian effects in simulations of coronary arterial blood flow. J Non-Newtonian Fluid Mech 233:155–165CrossRefGoogle Scholar
  7. Armstrong MJ (2015) Investigating and modeling the thixotropic behavior, microstructure and rheology of complex material. Ph.D. Thesis, University of DelawareGoogle Scholar
  8. Armstrong MJ, Beris AN, Rogers SA, Wagner NJ (2016a) Dynamic shear rheology of a thixotropic suspension: comparison of an improved structure-based model with large amplitude oscillatory shear experiments. J Rheol 60:433–450CrossRefGoogle Scholar
  9. Armstrong MJ, Beris AN, Wagner NJ (2016b) An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models. AICHE J 63:1937–1958.  https://doi.org/10.1002/aic.15577 CrossRefGoogle Scholar
  10. Baron AD, Clark MG (1997) Role of blood flow in the regulation of muscle glucose uptake. Annu Rev Nutr 17:487–499CrossRefGoogle Scholar
  11. Baskurt KO, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, Liao F, Hardeman MR, Jung F, Meiselman HJ, Nash G, Nemeth N, Neu B, Sandhagen B, Shin S, Thurston G, Wautier JL (2009) New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 42:75–97Google Scholar
  12. Bautista F, De Santos JM, Puig JE, Manero O (1999) Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. J Non-Newtonian Fluid Mech 80:93–113CrossRefGoogle Scholar
  13. Bessonov N, Sequeira A, Simakov S, Vassilevskii Y, Volpert V (2016) Methods of blood flow modeling. Math Model Nat Phenom 11(1):1–25CrossRefGoogle Scholar
  14. Bester J, Pretorius E (2016) Effects of IL-1beta, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci Rep 6:32188CrossRefGoogle Scholar
  15. Bharadwaj AN, Ewoldt R (2014) The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear. J Rheol 58(4):891–910CrossRefGoogle Scholar
  16. Bharadwaj AN, Ewoldt R (2015) Constitutive fingerprints in medium-amplitude oscillatory shear. J Rheol 59(2):557–592CrossRefGoogle Scholar
  17. Bird RB, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids. John Wiley and Sons, NYGoogle Scholar
  18. Blackwell B, Ewoldt R (2014) A simple thixotropic-viscoelastic constitutive model produces unique signatures in large-amplitude oscillatory shear (LAOS). J Non-Newtonian Fluid Mech 208-209:27–41CrossRefGoogle Scholar
  19. Brooks D (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles III. Experimental studies on the dextran/erythrocyte system. J Colloid Interface Sci 43:700–713CrossRefGoogle Scholar
  20. Brun JF, Varlet-Marie E, Romain AJ, Raynaud de Mauverger E (2011) Interrelationships among body composition, blood rheology and exercise performance. Clin Hemorheol Microcirc 49(1–4):183–197Google Scholar
  21. Bureau M, Healy JC, Bourgoin D, Joly M (1979) Etude rhéologique en régime transitoire de quelques échantillons de sangs humains artificiellement modifiés. Rheol Acta 18:756–768CrossRefGoogle Scholar
  22. Bureau M, Healy JC, Bourgoin D, Joly M (1980) Rheological hysteresis of blood at low shear rate. Biorheology 17:191–203CrossRefGoogle Scholar
  23. Cecchi E, Marrucci R, Poli D, Antonucci E, Abbate R, Gensini G, Prisco D, Manninni L (2006) Hyperviscosity as a possible risk factor for cerebral ischemic complications in atrial fibrillation patients. Am J Cardiol 97(12):1745–1748CrossRefGoogle Scholar
  24. Cecchi E, Liotta A, Gori A, Valente S, Giglioli C, Lazzeri C, Sofi F, Gensini G, Abbate R, Manninni L (2009a) Relationship between blood viscosity and infarct size in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 134(2):189–194CrossRefGoogle Scholar
  25. Cecchi E, Mannini L, Abbate R (2009b) Role of hyperviscosity in cardiovascular and microvascular diseases. G Ital Nefrol 26(Suppl 46):20–29Google Scholar
  26. Chauhan G, Verma A, Das A, Ojha K (2018) Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol Acta 57(3):267–285CrossRefGoogle Scholar
  27. Chen G, Zhou L, Liu Y, Liao F, Han D, Zhou H (2012) Regulation of blood viscosity in disease prevention and treatment. Chin Sci Bull 57(16):1946–1952CrossRefGoogle Scholar
  28. Ciuffetti G, Schillaci R, Lombardini R, Pirro M, vaudo G, Mannarino E (2005) Prognostic impact of low-shear whole blood viscosity in hypertensive men. Eur J Clin Investig 35(2):93–98CrossRefGoogle Scholar
  29. Clarion M, Deegan M, Helton T, Hudgins J, Monteferrante N, Ousley E, Armstrong M (2018) Contemporary modeling and analysis of steady state and transient human blood rheology. Rheol Acta 57(2):141–168CrossRefGoogle Scholar
  30. Cohen JD (2007) Overview of physiology, vascular biology, and mechanisms of hypertension. J Manag Care Pharm 13(5 Suppl):S6–S8Google Scholar
  31. Cokelet GR, Merrill EW, Gilliland ER, Shin H, Britten A, Wells RE (1963) The rheology of human blood–measurement near and at zero shear rate. Trans Soc Rheol 7(1):303–317CrossRefGoogle Scholar
  32. Connes P, Renoux C, Romana M, Abkarian M, Joly P, Martin C, Hardy-Dessources M, Ballas S (2018) Blood rheological abnormalities in sickle cell anemia. Clin Hemorheol Microcirc 68(2–3):165–172CrossRefGoogle Scholar
  33. Coussot P (2017) Bingham’s heritage. Rheol Acta.  https://doi.org/10.1007/s00397-016-0983-y CrossRefGoogle Scholar
  34. de Souza Mendes PR, Thompson RL (2012) A critical overview of elasto-viscoplastic thixotropic modeling. J Non-Newtonian Fluid Mech 187-188:8–15CrossRefGoogle Scholar
  35. de Souza Mendes PR, Thompson RL (2013) A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheol Acta 52:673–694CrossRefGoogle Scholar
  36. Dimitriou CJ, Ewoldt RH, McKinley GH (2013) Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J Rheol 57:27–70CrossRefGoogle Scholar
  37. Dullaert K, Mewis J (2006) A structural kinetics model for thixotropy. J Non-Newtonian Fluid Mech 139(1–2):21–30CrossRefGoogle Scholar
  38. Dumanskiy YV, Stoliarova OY, Syniachenko OV, Giulmamedova MF, Potapov YA (2017) Adsorption-rheological properties of blood serum in lung cancer patients. Exp Oncol 39(4):304–307Google Scholar
  39. Earl DJ, Deem MW (2005) Parallel temperin: theory, applications and new perspectives. Phys Chem 7:3910–3916Google Scholar
  40. Ercan M, Konukoglu D (2008) Role of plasma viscosity and plasma homocysteine level on hyperinsulinemic obese female subjects. Clin Hemorheol Microcirc 38(4):227–234Google Scholar
  41. Ewoldt R, Bharadwaj AN (2013) Low-dimensional intrinsic material functions for nonlinear viscoelasticy. Rheol Acta 52:201–219CrossRefGoogle Scholar
  42. Ewoldt RH, McKinley GH (2017) Mapping thixo-elastic-visco-plastic behavior. Rheol Acta 56:195–210CrossRefGoogle Scholar
  43. Floudas CA, Esposito WR (2000) Optimization for the parameter estimation of differential algebraic systems. Ind Eng Chem Res 39:1291–1310CrossRefGoogle Scholar
  44. Giacomin AJ, Dealy JM (1993) Large-amplitude oscillatory shear. In: Collyer AA (eds) Techniques in rheological measurement. Springer, DordrechtCrossRefGoogle Scholar
  45. Goodeve CF (1939) A general theory of thixotropy and viscosity. Trans Faraday Soc 35:342–358CrossRefGoogle Scholar
  46. Herrera-Valencia EE, Calderas F, Medina-Torres L, Perez-Camacho M, Moreno L, Manero O (2017) On the pulsating flow behavior of a biological fluid: human blood. Rheol Acta 56:387–407.  https://doi.org/10.1007/s00397-017-0994-3 CrossRefGoogle Scholar
  47. Horner J, Armstrong M, Wagner N, Beris A (2018a) Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J Rheol 62:577–591CrossRefGoogle Scholar
  48. Horner J, Beris A,Woulfe D,Wagner N (2018b) Effects of ex vivo aging and storage temperature on blood viscosity. Clin Hemorheol Microcirc.  https://doi.org/10.3233/CH-170330
  49. Hoyle D, Auhl D, harlen O, Barroso V, Wilhelm M McLeish T (2014) Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts. J Rheol 58:969–996CrossRefGoogle Scholar
  50. Hyun K, Wilhelm M, Klein C, Cho K, nam J, Ahn K, Lee S, Ewoldt R, McKinley G (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRefGoogle Scholar
  51. Irace C, Scarinci F, Scorcia V, Bruzzichessi D, Fiorentino R, Randazzo G, Scorcia G, Gnasso A (2011) Association among low whole blood viscosity, haematocrit, haemoglobin and diabetic retinopathy in subjects with type 2 diabetes. Br J Ophthalmol 95(1):94–98CrossRefGoogle Scholar
  52. Khodabandehlou T, Vimeux M, Le Devehat C (2003) Measurements of transcutaneous oxygen pressure and changes in blood rheology as markers of prognosis of critically ischemic limb in diabetes mellitus patients. Int J Low Extrem Wounds 2(1):13–18CrossRefGoogle Scholar
  53. Larson RG (2015) Constitutive equations for thixotropic fluids. J Rheol 59(3):595–611CrossRefGoogle Scholar
  54. Le Devehat C, Vimeux M, Khodabandehlou T (2004) Blood rheology in patients with diabetes mellitus. Clin Hemorheol Microcirc 30(3–4):297–300Google Scholar
  55. Lee AJ, Mowbray P, Lowe G, Fowkes F, Allan P (1998) Blood viscosity and elevated carotid intima- media thickness in men and women: the Edinburgh Artery Study. Circulation 97(15):1467–1473CrossRefGoogle Scholar
  56. Lowe GD, Lowe J, Drummond M, Reith S, Belch J, Kesson C, Wylie A, Foulds W, Forbes C, MacCuish A, Manderson W (1980) Blood viscosity in young male diabetics with and without retinopathy. Diabetologia 18(5):359–363Google Scholar
  57. Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG (1997) Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol 96(1):168–173CrossRefGoogle Scholar
  58. Malkin A, Kulichikhin V, Ilyin S (2017) A modern look on yield stress fluids. Rheol Acta 56:177–188.  https://doi.org/10.1007/s00397-016-0963-2 CrossRefGoogle Scholar
  59. Mandel DM (2016) Rheology of blood: biophysical significance, measurement, pathophysiology and pharmacologic therapy. World Journal of Pharmacy and Pharmaceutical Sciences 5(6):2165–2184Google Scholar
  60. Merrill E (1969) Rheology of blood. Physiol Rev 49:4Google Scholar
  61. Metropolis N, Rosnebluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1090CrossRefGoogle Scholar
  62. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, NYGoogle Scholar
  63. Mollica H, Coclite A, Miali M, Pereira R, Paleari L, Maneschi C, DeCensi A, Decuzzi P (2018) Deciphering the relative contribution of vascular inflammation and blood rheology in metastatic spreading. Biomicrofluidics 12(4):042205CrossRefGoogle Scholar
  64. Moreno L, Calderas F, Sanchez-Olivares G, Medina-Torres L, Sanchez-Solis A, Manero O (2015) Effect of cholesterol and tryglycerides levels on the rheological behavior of human blood. Korea-Australia Rheology Journal 27(1):1–10CrossRefGoogle Scholar
  65. Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non Newtonian Fluid Mech 102:157–178CrossRefGoogle Scholar
  66. Naghedi-Baghdar H, Seyed-Mohammad N, Taghipour A, Nematy M, Shokri S, Mahammad-Reza M, Molkara T, Javan R (2018) Effect of diet on blood viscosity in healthy humans: a systematic review. Electron Physician 10(3):6563–6570CrossRefGoogle Scholar
  67. Owens R (2006) A new microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57–70CrossRefGoogle Scholar
  68. Renoux C, Joly P, Gauthier A, Pialoux V, Romanet-Faes C, Bertrand Y, Garnier N, Cuzzubbo D, Cannas G, Connes P (2018) Blood rheology in children with the S/beta+-thalassemia syndrome. Clin Hemorheol Microcirc 69(1–2):207–214CrossRefGoogle Scholar
  69. Replogle RL, Meiselman HJ, Merrill EW (1967) Clinical implications of blood rheology studies. Circulation 36(1):148–160CrossRefGoogle Scholar
  70. Santos MJ, Pedro M, Canhao H, Fernandes e Fernandes J, da Silva C, Fonseca J, Saldanha C (2011) Hemorheological parameters are related to subclinical atherosclerosis in systemic lupuserythematosus and rheumatoid arthritis patients. Atherosclerosis 219(2):821–826CrossRefGoogle Scholar
  71. Saramito P (2009) A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model. J Non-Newtonian Fluid Mech 158:154–161CrossRefGoogle Scholar
  72. Schut NH, van Arkel E, Hardeman M, Bilo H, Michels R, Vreeken J (1992) Blood and plasma viscosity in diabetes: possible contribution to late organ complications? Diabetes Res 19(1):31–35Google Scholar
  73. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  74. Sercelik A, Besnili AF (2018) The contribution of whole blood viscosity to the process of aortic valve sclerosis. Med Princ Pract 27(2):173–178CrossRefGoogle Scholar
  75. Skretteberg PT, Bodegard J, Kjeldsen S, Erikssen G, Thaulow E, Sandvik L, Erikssen J (2010) Interaction between inflammation and blood viscosity predicts cardiovascular mortality. Scand Cardiovasc J 44(2):107–112CrossRefGoogle Scholar
  76. Sloop GD, Weidman JJ, St Cyr JA (2015) The systemic vascular resistance response: a cardiovascular response modulating blood viscosity with implications for primary hypertension and certain anemias. Ther Adv Cardiovasc Dis 9(6):403–411CrossRefGoogle Scholar
  77. Song H, Hyun K (2018) Decomposition of Q0 from FT-rheology into elastic and viscous parts: intrinsic-nonlinear master curves for polymer solutions. J Rheol 62:919–938CrossRefGoogle Scholar
  78. Sousa PC, Carneiro K, Vaz R, Cerejo A, Pinho FT, Alves MA, Oliveira MS (2013) Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology 50(5–6):269–282Google Scholar
  79. Sousa PC, Pinho FT, Alves MA, Oliveira M (2016) A review of hemorheology: measuring techniques and recent advances. Korea Australia Rheology Journal. 28(1):1–22CrossRefGoogle Scholar
  80. Spall JC (2003) Introduction to stochastic search optimization. John Wiley & Sons, HobokenCrossRefGoogle Scholar
  81. Sun N, De Kee D (2001) Simple shear, hysteresis and yield stress of biofluids. Can J Chem Eng 79:36–41CrossRefGoogle Scholar
  82. Tamariz LJ, Young J, Panklow J, Yeh H, Schmidt M, Astor B, Brancati F (2008) Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol 168(10):1153–1160CrossRefGoogle Scholar
  83. Turczynski B, Michalska-Malecka K, Slowinska L, Szczesny S, Romaniuk W (2003) Correlations between the severity of retinopathy in diabetic patients and whole blood and plasma viscosity. Clin Hemorheol Microcirc 29(2):129–137Google Scholar
  84. Wang W, Huang X, Sun Y, Zhang J (2018) Blood rheology of angina pectoris patients with myocardial injury after ischemia reperfusion and its effect on thromboxane B(2) levels. Exp Ther Med 15(1):769–772Google Scholar
  85. Wei Y, Solomon MJ, Larson RG (2016) Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. J Rheol 60(6):1301–1315CrossRefGoogle Scholar
  86. Williams DF, Askill IN, Smith R (1985) Protein adsorption and desorption phenomena on clearn metal surfaces. J Biomed Mater Res 19(3):313–320CrossRefGoogle Scholar
  87. Woodward M, Rumley A, Tunstall-Pedoe H, Lowe GD (2003) Does sticky blood predict a sticky end? Associations of blood viscosity, haematocrit and fibrinogen with mortality in the West of Scotland. Br J Haematol 122(4):645–650CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matthew Armstrong
    • 1
  • Jeffrey Horner
    • 2
  • Michael Clark
    • 1
  • Michael Deegan
    • 1
  • Timothy Hill
    • 1
  • Charles Keith
    • 1
  • Lynne Mooradian
    • 1
  1. 1.Department of Chemistry and Life ScienceUnited States Military AcademyNew YorkUSA
  2. 2.Center for Molecular and Engineering Thermodynamics and Department of Chemical and Biological EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations