Advertisement

Rheologica Acta

, Volume 57, Issue 11, pp 729–743 | Cite as

Droplet retraction in the presence of nanoparticles with different surface modifications

  • Parya Siahcheshm
  • Fatemeh Goharpey
  • Reza Foudazi
Original Contribution
  • 92 Downloads

Abstract

We studied the influence of nanoparticles with different surface modifications on the interfacial tension and relaxation of model polymer blend after cessation of different strains. The droplet retraction experiments were carried out on a model system composed of polydimethylsiloxane (PDMS) as the suspending fluid and polyisobutylene (PIB) as droplet at room temperature in the presence of hydrophobic and hydrophilic nanosilica. Different weight fractions of particles were dispersed in the PIB droplet before forming a dispersed droplet by using a microsyringe in shear cell. We found that applied strain, nanoparticle concentration and their thermodynamically preferred localization affect both nominal interfacial tension and droplet retraction process. By addition of nanoparticles at a concentration as low as 0.2%wt, the nominal interfacial tension decreases from 3.12 ± 0.15 mN/m for neat PIB-PDMS interface depending on the surface characteristics of nanosilica. Hydrophilic nanosilica has the most effect on nominal interfacial tension and decreases it as low as 0.2 ± 0.21 mN/m at 1 wt.% loading under a strain of 7. The results show that the retraction process in this system is mainly controlled by interfacial phenomena rather than bulk rheological properties. Additionally, the shape evolution of droplets changes and the retraction rate slows down in the presence of nanoparticles.

Keywords

Immiscible polymer blends Silica nanoparticles Interfacial tension Droplet deformation Deformed droplet retraction (DDR) 

References

  1. Ajji A, Utracki LA (1996) Interphase and compatibilization of polymer blends. Polym Eng Sci 36(12):1574–1585.  https://doi.org/10.1002/pen.10554 CrossRefGoogle Scholar
  2. Anastasiadis SH (2010) Interfacial tension in binary polymer blends and the effects of copolymers as emulsifying agents. In Wolf BA, Enders S (eds) Polymer Thermodynamics. Springer Berlin, Heidelberg, pp 179–269.  https://doi.org/10.1007/12_2010_81 CrossRefGoogle Scholar
  3. Assighaou S, Benyahia L (2008) Universal retraction process of a droplet shape after a large strain jump. Phys Rev E 77(3):036305.  https://doi.org/10.1103/PhysRevE.77.036305 CrossRefGoogle Scholar
  4. Assighaou S, Benyahia L (2010) Scaling law behaviour of the retraction of a Newtonian droplet after a strain jump in a Newtonian matrix. Rheol Acta 49(6):677–686.  https://doi.org/10.1007/s00397-009-0429-x CrossRefGoogle Scholar
  5. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interf Sci 100–102:503–546.  https://doi.org/10.1016/S0001-8686(02)00069-6 CrossRefGoogle Scholar
  6. Bécu L, Benyahia L (2009) Strain-induced droplet retraction memory in a pickering emulsion. Langmuir 25(12):6678–6682.  https://doi.org/10.1021/la9006235 CrossRefGoogle Scholar
  7. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7(1–2):21–41.  https://doi.org/10.1016/S1359-0294(02)00008-0 CrossRefGoogle Scholar
  8. Binks BP, Lumsdon SO (2000) Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 16(6):2539–2547.  https://doi.org/10.1021/la991081j CrossRefGoogle Scholar
  9. Bon SAF, Mookhoek SD, Colver PJ, Fischer HR, van der Zwaag S (2007) Route to stable non-spherical emulsion droplets. Eur Polym J 43(11):4839–4842.  https://doi.org/10.1016/j.eurpolymj.2007.09.001 CrossRefGoogle Scholar
  10. Borrell M, Leal LG (2007) Interfacial activity of polymer-coated gold nanoparticles. Langmuir 23(25):12497–12502.  https://doi.org/10.1021/la701985r CrossRefGoogle Scholar
  11. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44(8):2455–2462.  https://doi.org/10.1016/S0032-3861(03)00094-6 CrossRefGoogle Scholar
  12. Cohen A, Carriere CJ (1989) Analysis of a retraction mechanism for imbedded polymeric fibers. Rheol Acta 28(3):223–232.  https://doi.org/10.1007/BF01332854 CrossRefGoogle Scholar
  13. Elemans PHM (1990) The measurement of interfacial tension in polymer/polymer systems: the breaking thread method. J Rheol 34(8):1311–1325.  https://doi.org/10.1122/1.550087 CrossRefGoogle Scholar
  14. Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20):6029–6040.  https://doi.org/10.1016/j.polymer.2007.07.061 CrossRefGoogle Scholar
  15. Elias L, Fenouillot F, Majesté JC, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49(20):4378–4385.  https://doi.org/10.1016/j.polymer.2008.07.018 CrossRefGoogle Scholar
  16. Feng J-M, Liu XQ, Bao RY, Yang W, Xie BH, Yang MB (2015) Suppressing phase coarsening in immiscible polymer blends using nano-silica particles located at the interface. RSC Adv 5(91):74295–74303.  https://doi.org/10.1039/C5RA13637G CrossRefGoogle Scholar
  17. Fenouillot F, Cassagnau P, Majesté J-C (2009) Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50(6):1333–1350.  https://doi.org/10.1016/j.polymer.2008.12.029 CrossRefGoogle Scholar
  18. Foudazi R, Nazockdast H (2010) Rheology of polypropylene/liquid crystalline polymer blends: effect of compatibilizer and silica. Appl Rheol 20(1):1–9.  https://doi.org/10.3933/ApplRheol-20-12218 CrossRefGoogle Scholar
  19. Foudazi R, Nazockdast H (2013) Rheology and morphology of nanosilica-containing polypropylene and polypropylene/liquid crystalline polymer blend. J Appl Polym Sci 128(6):3501–3511.  https://doi.org/10.1002/app.38269 CrossRefGoogle Scholar
  20. Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26(2):320–329.  https://doi.org/10.1021/ma00054a011 CrossRefGoogle Scholar
  21. Hassander H, Johansson B, Törnell B (1989) The mechanism of emulsion stabilization by small silica (Ludox) particles. Colloids and Surfaces 40:93–105.  https://doi.org/10.1016/0166-6622(89)80010-1 CrossRefGoogle Scholar
  22. Hayashi R, Takahashi M, Yamane H, Jinnai H, Watanabe H (2001) Dynamic interfacial properties of polymer blends under large step strains: shape recovery of a single droplet. Polymer 42(2):757–764.  https://doi.org/10.1016/S0032-3861(00)00373-6 CrossRefGoogle Scholar
  23. He Y, Huang Y, Li Q, Mei Y, Kong M, Yang Q (2012) Morphological hysteresis in immiscible PIB/PDMS blends filled with fumed silica nanoparticles. Colloid Polym Sci 290(11):997–1004.  https://doi.org/10.1007/s00396-012-2614-1 CrossRefGoogle Scholar
  24. Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C (2007) Interfacial tension reduction in PBT/PE/clay nanocomposite. Rheol Acta 46(4):469–478.  https://doi.org/10.1007/s00397-006-0123-1 CrossRefGoogle Scholar
  25. Hu HH, Joseph DD (1994) Evolution of a liquid drop in a spinning drop tensiometer. J Colloid Interface Sci 162(2):331–339.  https://doi.org/10.1006/jcis.1994.1047 CrossRefGoogle Scholar
  26. Jeon HK, Kim JK (1998) The effect of the amount of in situ formed copolymers on the final morphology of reactive polymer blends with an in situ Compatibilizer. Macromolecules 31(26):9273–9280.  https://doi.org/10.1021/ma971002f CrossRefGoogle Scholar
  27. Kamal MR, Lai-Fook R, Demarquette NR (1994) Interfacial tension in polymer melts. Part II: effects of temperature and molecular weight on interfacial tension. Polym Eng Sci 34(24):1834–1839.  https://doi.org/10.1002/pen.760342408 CrossRefGoogle Scholar
  28. Karkhaneh-Yousefi F, Goharpey F, Foudazi R (2017) Interfacial activity of reactive compatibilizers in polymer blends. Rheol Acta 56(10):851–862.  https://doi.org/10.1007/s00397-017-1034-z CrossRefGoogle Scholar
  29. Kong M, Huang Y, Chen G, Yang Q, Li G (2011) Retarded relaxation and breakup of deformed PA6 droplets filled with nanosilica in PS matrix during annealing. Polymer 52(22):5231–5236.  https://doi.org/10.1016/j.polymer.2011.08.052 CrossRefGoogle Scholar
  30. Koning C (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23(4):707–757.  https://doi.org/10.1016/S0079-6700(97)00054-3 CrossRefGoogle Scholar
  31. Lam S, Velikov KP, Velev OD (2014) Pickering stabilization of foams and emulsions with particles of biological origin. Curr Opin Colloid Interface Sci 19(5):490–500.  https://doi.org/10.1016/j.cocis.2014.07.003 CrossRefGoogle Scholar
  32. Lerdwijitjarud W, Larson RG, Sirivat A, Solomon MJ (2003) Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly (dimethyl siloxane) blends. J Rheol 47(1):37–58.  https://doi.org/10.1122/1.1530623 CrossRefGoogle Scholar
  33. Lerdwijitjarud W, Sirivat A, Larson RG (2004) Influence of dispersed-phase elasticity on steady-state deformation and breakup of droplets in simple shearing flow of immiscible polymer blends. J Rheol 48(4):843–862.  https://doi.org/10.1122/1.1753275 CrossRefGoogle Scholar
  34. Levine S, Bowen BD, Partridge SJ (1989) Stabilization of emulsions by fine particles II. Capillary and van der Waals forces between particles. Colloids and Surfaces 38(2):345–364.  https://doi.org/10.1016/0166-6622(89)80272-0 CrossRefGoogle Scholar
  35. Liu Y, Kong B, Yang X (2005) Studies on some factors influencing the interfacial tension measurement of polymers. Polymer 46(8):2811–2816.  https://doi.org/10.1016/j.polymer.2005.01.073 CrossRefGoogle Scholar
  36. Loeb GI, Schrader ME (2013) Modern approaches to wettability: theory and applications. Springer Science & Business Media, BerlinGoogle Scholar
  37. Luciani A, Champagne MF, Utracki LA (1997) Interfacial tension coefficient from the retraction of ellipsoidal drops. J Polym Sci B Polym Phys 35(9):1393–1403.  https://doi.org/10.1002/(SICI)1099-0488(19970715)35:9<1393::AID-POLB9>3.0.CO;2-N CrossRefGoogle Scholar
  38. Maani A, Blais B, Heuzey MC, Carreau PJ (2012) Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends. J Rheol 56(3):625–647.  https://doi.org/10.1122/1.3700966 CrossRefGoogle Scholar
  39. Macaúbas PHP, Kawamoto H, Takahashi M, Okamoto K, Takigawa T (2007) Shape and structure recovery of an LCP droplet under a large step strain: observation and stress calculation. Rheol Acta 46(7):921–932.  https://doi.org/10.1007/s00397-007-0175-x CrossRefGoogle Scholar
  40. Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Non-Newtonian Fluid Mech 78(2–3):227–241.  https://doi.org/10.1016/S0377-0257(98)00065-2 CrossRefGoogle Scholar
  41. Mao C, Kong M, Yang Q, Li G, Huang Y (2016) Droplet coalescence and clustering behavior in microsphere-filled polymeric emulsions under shear flow: the key role of asymmetric interfacial affinities. Phys Chem Chem Phys Royal Society of Chemistry 18(6):4429–4436.  https://doi.org/10.1039/C5CP07728A CrossRefGoogle Scholar
  42. Mighri F, Carreau PJ, Ajji A (1998) Influence of elastic properties on drop deformation and breakup in shear flow. J Rheol. 42(6):1477–1490.  https://doi.org/10.1122/1.550897 CrossRefGoogle Scholar
  43. Milner ST (1996) How copolymers promote mixing of immiscible homopolymers. J Rheol 40(4):663–687.  https://doi.org/10.1122/1.550731 CrossRefGoogle Scholar
  44. Mo H, Zhou C, Yu W (2000) A new method to determine interfacial tension from the retraction of ellipsoidal drops. J Non-Newtonian Fluid Mech 91(2–3):221–232.  https://doi.org/10.1016/S0377-0257(99)00103-2 CrossRefGoogle Scholar
  45. Moghimi E, Goharpey F, Foudazi R (2014) Role of droplet bridging on the stability of particle-containing immiscible polymer blends. Rheol Acta 53(2):165–180.  https://doi.org/10.1007/s00397-013-0752-0 CrossRefGoogle Scholar
  46. Monteux C, Kirkwood J, Xu H, Jung E, Fuller GG (2007) Determining the mechanical response of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure measurements of droplets. Phys Chem Chem Phys 9(48):6344–6350.  https://doi.org/10.1039/b708962g CrossRefGoogle Scholar
  47. Murray BS, Ettelaie R (2004) Foam stability: proteins and nanoparticles. Curr Opin Colloid Interface Sci 9(5):314–320.  https://doi.org/10.1016/j.cocis.2004.09.004 CrossRefGoogle Scholar
  48. Okamoto K, Iwatsuki S, Ishikawa M, Takahashi M (2008) Hydrodynamic interaction and coalescence of two droplets under large step shear strains. Polymer 49(8):2014–2017.  https://doi.org/10.1016/j.polymer.2008.03.003 CrossRefGoogle Scholar
  49. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747.  https://doi.org/10.1002/app.1969.070130815 CrossRefGoogle Scholar
  50. Paulson DS (2009) Biostatistics and microbiology: a survival manual, Korea-Australia rheology. Springer New York, New York.  https://doi.org/10.1007/978-0-387-77282-0 CrossRefGoogle Scholar
  51. Peng X, Huang Y, Xia T, Kong M, Li G (2011) Shapes of dispersed phase in confined PIB/PDMS blends with different compositions during shear flow. Eur Polym J 47(10):1956–1963.  https://doi.org/10.1016/j.eurpolymj.2011.07.008 CrossRefGoogle Scholar
  52. Pickering SU (1907) CXCVI.—emulsions. J Chem Soc Trans 91:2001–2021.  https://doi.org/10.1039/CT9079102001 CrossRefGoogle Scholar
  53. Ramic AJ, Stehlin JC, Hudson SD, Jamieson AM, Manas-Zloczower I (2000) Influence of block copolymer on droplet breakup and coalescence in model immiscible polymer blends. Macromolecules 33(2):371–374.  https://doi.org/10.1021/ma990420c CrossRefGoogle Scholar
  54. Rienstra SW (1990) The shape of a sessile drop for small and large surface tension. J Eng Math 24(3):193–202.  https://doi.org/10.1007/BF00058465 CrossRefGoogle Scholar
  55. Sanjari Shahrezaei MA, Goharpey F, Foudazi R (2017) Effect of particle-particle and polymer-particle interactions on nanosilica aggregation in polystyrene. Polym Compos 39(8):2904–2914.  https://doi.org/10.1002/pc.24287 CrossRefGoogle Scholar
  56. Sigillo I, di Santo L, Guido S, Grizzuti N (1997) Comparative measurements of interfacial tension in a model polymer blend. Polym Eng Sci 37(9):1540–1549.  https://doi.org/10.1002/pen.11802 CrossRefGoogle Scholar
  57. Sinha Ray S, Pouliot S, Bousmina M, Utracki LA (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer 45(25):8403–8413.  https://doi.org/10.1016/j.polymer.2004.10.009 CrossRefGoogle Scholar
  58. Son Y (2006) Comparative measurement of interfacial tension by transient dynamic methods. J Appl Polym Sci 99(4):1910–1918.  https://doi.org/10.1002/app.22670 CrossRefGoogle Scholar
  59. Son Y, Migler KB (2002) Interfacial tension measurement between immiscible polymers: improved deformed drop retraction method. Polymer 43(10):3001–3006.  https://doi.org/10.1016/S0032-3861(02)00097-6 CrossRefGoogle Scholar
  60. Stancik EJ, Fuller GG (2004) Connect the drops: using solids as adhesives for liquids. Langmuir 20(12):4805–4808.  https://doi.org/10.1021/la049778e CrossRefGoogle Scholar
  61. Stöckelhuber KW, Das A, Jurk R, Heinrich G (2010) Contribution of physico-chemical properties of interfaces on dispersibility, adhesion and flocculation of filler particles in rubber. Polymer 51(9):1954–1963.  https://doi.org/10.1016/j.polymer.2010.03.013 CrossRefGoogle Scholar
  62. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39(8):1526–1563.  https://doi.org/10.1016/j.progpolymsci.2014.04.002 CrossRefGoogle Scholar
  63. Takahashi M, Okamoto K (2007) Retraction of rod-like and spheroidal droplets and stress relaxation after step shear strain in polymer blends. Nihon Reoroji Gakkaishi 35(4):199–205.  https://doi.org/10.1678/rheology.35.199 CrossRefGoogle Scholar
  64. Tarimala S, Ranabothu SR, Vernetti JP, Dai LL (2004) Mobility and in situ aggregation of charged microparticles at oil−water interfaces. Langmuir 20(13):5171–5173.  https://doi.org/10.1021/la0495480 CrossRefGoogle Scholar
  65. Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138(834):41–48.  https://doi.org/10.1098/rspa.1932.0169 CrossRefGoogle Scholar
  66. Thareja P, Velankar S (2006) Particle-induced bridging in immiscible polymer blends. Rheol Acta 46(3):405–412.  https://doi.org/10.1007/s00397-006-0130-2 CrossRefGoogle Scholar
  67. Thareja P, Moritz K, Velankar SS (2010) Interfacially active particles in droplet/matrix blends of model immiscible homopolymers: particles can increase or decrease drop size. Rheol Acta 49(3):285–298.  https://doi.org/10.1007/s00397-009-0421-5 CrossRefGoogle Scholar
  68. Tong W, Huang Y, Liu C, Chen X, Yang Q, Li G (2010) The morphology of immiscible PDMS/PIB blends filled with silica nanoparticles under shear flow. Colloid Polym Sci 288(7):753–760.  https://doi.org/10.1007/s00396-010-2201-2 CrossRefGoogle Scholar
  69. Tucker CL III, Moldenaers P (2002) Microstructural evolution in polymer blends. Annu Rev Fluid Mech 34(1):177–210.  https://doi.org/10.1146/annurev.fluid.34.082301.144051 CrossRefGoogle Scholar
  70. Utracki LA (1990) Polymer alloys and blends: thermodynamics and rheology. Carl Hanser Verlag, Munich, 356 ppGoogle Scholar
  71. Vandebril S, Vermant J, Moldenaers P (2010) Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology. Soft Matter 6(14):3353.  https://doi.org/10.1039/b927299b CrossRefGoogle Scholar
  72. Vermant J, Cioccolo G, Golapan Nair K, Moldenaers P (2004) Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol Acta 43(5):529–538.  https://doi.org/10.1007/s00397-004-0381-8 CrossRefGoogle Scholar
  73. Vermant J, Vandebril S, Dewitte C, Moldenaers P (2008) Particle-stabilized polymer blends. Rheol Acta 47(7):835–839.  https://doi.org/10.1007/s00397-008-0285-0 CrossRefGoogle Scholar
  74. Viades-Trejo J, Gracia-Fadrique J (2007) Spinning drop method. Colloids Surf A Physicochem Eng Asp 302(1–3):549–552.  https://doi.org/10.1016/j.colsurfa.2007.03.033 CrossRefGoogle Scholar
  75. Vinckier I, Moldenaers P, Mewis J (1997) Transient rheological response and morphology evolution of immiscible polymer blends. J Rheol 41(3):705–718.  https://doi.org/10.1122/1.550870 CrossRefGoogle Scholar
  76. Wagner M, Wolf BA (1993) Interfacial tension between polyisobutylene and poly(dimethylsiloxane): influence of chain length, temperature, and solvents. Macromolecules 26(24):6498–6502.  https://doi.org/10.1021/ma00076a029 CrossRefGoogle Scholar
  77. Xing P, Bousmina M, Rodrigue D, Kamal MR (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33(21):8020–8034.  https://doi.org/10.1021/ma000537x CrossRefGoogle Scholar
  78. Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H, Masuda T (1998) Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain. J Rheol 42(3):567–580.  https://doi.org/10.1122/1.550932 CrossRefGoogle Scholar
  79. Yu W, Bousmina M, Zhou C, Tucker CL III (2004) Theory for drop deformation in viscoelastic systems. J Rheol 48(2):417–438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Chemical & Materials EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations