Advertisement

Rheologica Acta

, Volume 58, Issue 1–2, pp 97–107 | Cite as

Depletion-induced interaction in concentrated bimodal suspensions of nanosilica in poly(ethylene glycol)

  • Zahra Daneshfar
  • Fatemeh GoharpeyEmail author
  • Reza Foudazi
Original Contribution
  • 82 Downloads

Abstract

In this work, we examine the effect of short-range depletion attraction on the rheology of concentrated bimodal suspensions. The depletion interaction is driven by small particle exclusion from the space between big particles with a magnitude depending on the relative concentration of the constituents. We have chosen two particle size ratios, δ = 3.4 and 6.8, in constant volume fraction ϕ = 0.59 to study the depletion-induced bonding between large particles in the poly(ethylene glycol)/nanosilica suspensions without liquid-liquid phase separation. The clustering of large particles in the samples is characterized via the thixotropic behavior and shear thickening response. Bimodal suspensions with R = 0.6 and 0.75 at δ = 6.8 show thixotropy and reduced zero-shear viscosity compared to bimodal samples with the same R at δ = 3.4 size ratio. Additionally, the onset of shear thickening obtained from the experimental and both modeling results occurs at significantly lower shear rates in samples, which contain more clusters of large particles. Finally, we propose a modified state diagram for bimodal concentrated suspensions based on the rheological measurements.

Keywords

Bimodal suspensions State diagram Depletion interaction  Viscosity Shear thickening Thixotropy 

Notes

References

  1. Anderson BJ, Zukoski CF (2007) Nanoparticle stability in polymer melts as determined by particle second virial measurement. Macromolecules 40:5133–5140.  https://doi.org/10.1021/ma0624346 CrossRefGoogle Scholar
  2. Anil Kumar A (2014) Anomalous dynamics of binary colloidal mixtures over a potential barrier: effect of depletion interaction. J Chem Phys 141:034904.  https://doi.org/10.1063/1.4890282 CrossRefGoogle Scholar
  3. Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 22:1255–1256.  https://doi.org/10.1063/1.1740347 CrossRefGoogle Scholar
  4. Benjamin JA, Charles FZ (2009) Colloidal glass transition in unentangled polymer nanocomposite melts. J Phys Condens Matter 21:285102.  https://doi.org/10.1088/0953-8984/21/28/285102 CrossRefGoogle Scholar
  5. Crassous JJ, Casal-Dujat L, Medebach M, Obiols-Rabasa M, Vincent R, Reinhold F, Boyko V, Willerich I, Menzel A, Moitzi C (2013) Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition. Langmuir 29:10346–10359.  https://doi.org/10.1021/la4016542 CrossRefGoogle Scholar
  6. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20:417–437.  https://doi.org/10.1016/0095-8522(65)90022-X CrossRefGoogle Scholar
  7. Daneshfar Z, Goharpey F, Nazockdast H, Foudazi R (2017) Rheology of concentrated bimodal suspensions of nanosilica in PEG. J Rheol 61:955–966.  https://doi.org/10.1122/1.4995604. CrossRefGoogle Scholar
  8. Dijkstra M, Van Roij R, Evans R (1999) Phase diagram of highly asymmetric binary hard-sphere mixtures. Phys Rev E 59:5744–5771.  https://doi.org/10.1103/PhysRevE.59.5744 CrossRefGoogle Scholar
  9. Dinsmore A, Yodh A, Pine D (1995) Phase diagrams of nearly-hard-sphere binary colloids. Phys Rev E 52:4045–4057.  https://doi.org/10.1103/PhysRevE.52.4045 CrossRefGoogle Scholar
  10. Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data complex fluids in biological systems(pp. 207–241): Springer doi:  https://doi.org/10.1007/978-1-4939-2065-5_6.
  11. Foss DR, Brady JF (2000) Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation. J Fluid Mech 407:167–200.  https://doi.org/10.1017/S0022112099007. CrossRefGoogle Scholar
  12. Foudazi R, Masalova I, Malkin AY (2012) The rheology of binary mixtures of highly concentrated emulsions: effect of droplet size ratio. J Rheol 56:1299–1314.  https://doi.org/10.1122/1.4736556 CrossRefGoogle Scholar
  13. Galindo-Rosales F, Rubio-Hernandez F, Sevilla A, Ewoldt R (2011) How Dr. Malcom M. Cross may have tackled the development of “an apparent viscosity function for shear thickening fluids”. J Non-Newtonian Fluid Mech 166:1421–1424.  https://doi.org/10.1016/j.jnnfm.2011.08.008 CrossRefGoogle Scholar
  14. Germain P, Amokrane S (2009) Equilibrium route to colloidal gelation: mixtures of hard-sphere-like colloids. Phys Rev Lett 102:058301.  https://doi.org/10.1103/PhysRevLett.102.058301 CrossRefGoogle Scholar
  15. Germain P, Amokrane S (2010) Gelation and phase coexistence in colloidal suspensions with short-range forces: generic behavior versus specificity. Phys Rev E 81:011407.  https://doi.org/10.1103/PhysRevE.81.011407 CrossRefGoogle Scholar
  16. Gopalakrishnan V, Shah S, Zukoski C (2005) Cage melting and viscosity reduction in dense equilibrium suspensions. J Rheol 49:383–400.  https://doi.org/10.1122/1.1849183 CrossRefGoogle Scholar
  17. Gopalakrishnan V, Zukoski C (2004) Effect of attractions on shear thickening in dense suspensions. J Rheol 48:1321–1344.  https://doi.org/10.1122/1.1784785 CrossRefGoogle Scholar
  18. Hendricks J, Capellmann R, Schofield A, Egelhaaf S, Laurati M (2015) Different mechanisms for dynamical arrest in largely asymmetric binary mixtures. Phys Rev E 91:032308.  https://doi.org/10.1103/PhysRevE.91.032308. CrossRefGoogle Scholar
  19. Imhof A, Dhont J (1995) Experimental phase diagram of a binary colloidal hard-sphere mixture with a large size ratio. Phys Rev Lett 75:1662–1665.  https://doi.org/10.1103/PhysRevLett.75.1662 CrossRefGoogle Scholar
  20. Jiang T, Zukoski CF (2012) Role of particle size and polymer length in rheology of colloid–polymer composites. Macromolecules 45:9791–9803.  https://doi.org/10.1021/ma301184t CrossRefGoogle Scholar
  21. Jiang T, Zukoski CF (2013) Rheology of high density glass of binary colloidal mixtures in unentangled polymer melts. Soft Matter 9:3117–3130.  https://doi.org/10.1039/C3SM27874C CrossRefGoogle Scholar
  22. Kalman DP, Wagner NJ (2009) Microstructure of shear-thickening concentrated suspensions determined by flow-USANS. Rheol Acta 48:897–908.  https://doi.org/10.1007/s00397-009-0351-2 CrossRefGoogle Scholar
  23. Koumakis N, Moghimi E, Besseling R, Poon WC, Brady JF, Petekidis G (2015) Tuning colloidal gels by shear. Soft Matter 11:4640–4648.  https://doi.org/10.1039/C5SM00411J CrossRefGoogle Scholar
  24. Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55:673–706.  https://doi.org/10.1122/1.3571554 CrossRefGoogle Scholar
  25. Lekkerkerker HN, Tuinier R (2011) Colloids and the depletion interaction. SpringerGoogle Scholar
  26. Lionberger RA (2002) Viscosity of bimodal and polydisperse colloidal suspensions. Phys Rev E 65:061408.  https://doi.org/10.1103/PhysRevE.65.061408 CrossRefGoogle Scholar
  27. Lionberger RA, Russel W (2000) Microscopic theories of the rheology of stable colloidal dispersions. Adv Chem Phys 111:399–474Google Scholar
  28. López-Sánchez E, Estrada-Álvarez CD, Pérez-Ángel G, Méndez-Alcaraz JM, González-Mozuelos P, Castañeda-Priego R (2013) Demixing transition, structure, and depletion forces in binary mixtures of hard-spheres: the role of bridge functions. J Chem Phys 139:104908–104940.  https://doi.org/10.1063/1.4820559 CrossRefGoogle Scholar
  29. Maranzano BJ, Wagner NJ (2001) The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114:10514–10527.  https://doi.org/10.1063/1.1373687 CrossRefGoogle Scholar
  30. Mason T, Bibette J, Weitz D (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 179:439–448.  https://doi.org/10.1006/jcis.1996.0235 CrossRefGoogle Scholar
  31. Mason T, Weitz D (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773.  https://doi.org/10.1103/PhysRevLett.75.2770 CrossRefGoogle Scholar
  32. Melrose J, Van Vliet J, Ball R (1996) Continuous shear thickening and colloid surfaces. Phys Rev Lett 77:4660–4663.  https://doi.org/10.1103/PhysRevLett.77.4660 CrossRefGoogle Scholar
  33. Mewis J, Wagner NJ (2012) Colloidal suspension rheology, Cambridge University Press.Google Scholar
  34. Moghimi E, Jacob AR, Koumakis N, Petekidis G (2017) Colloidal gels tuned by oscillatory shear. Soft Matter 13:2371–2383.  https://doi.org/10.1039/C6SM02508K CrossRefGoogle Scholar
  35. Mohraz A, Weeks ER, Lewis JA (2008) Structure and dynamics of biphasic colloidal mixtures. Phys Rev E 77:060403.  https://doi.org/10.1103/PhysRevE.77.060403 CrossRefGoogle Scholar
  36. Moreno AJ, Colmenero J (2006a) Anomalous dynamic arrest in a mixture of large and small particles. Phys Rev E 74:021409.  https://doi.org/10.1103/PhysRevE.74.021409 CrossRefGoogle Scholar
  37. Moreno AJ, Colmenero J (2006b) Relaxation scenarios in a mixture of large and small spheres: dependence on the size disparity. J Chem Phys 125:164507.  https://doi.org/10.1063/1.2361286 CrossRefGoogle Scholar
  38. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf S, Poon W, Pusey PN (2008) Yielding behavior of repulsion-and attraction-dominated colloidal glasses. J Rheol 52:649–676.  https://doi.org/10.1122/1.2838255 CrossRefGoogle Scholar
  39. Poon WCK, Weeks ER, Royall CP (2012) On measuring colloidal volume fractions. Soft Matter 8:21–30.  https://doi.org/10.1039/C1SM06083J CrossRefGoogle Scholar
  40. Russel WB, Grant MC (2000) Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion. Colloids Surf A Physicochem Eng Asp 161:271–282.  https://doi.org/10.1016/S0927-7757(99)00376-3 CrossRefGoogle Scholar
  41. Sanyal S, Easwar N, Ramaswamy S, Sood A (1992) Phase separation in binary nearly-hard-sphere colloids: evidence for the depletion force. EPL (Europhysics Letters) 18:107–110 http://iopscience.iop.org/0295-5075/18/2/003 CrossRefGoogle Scholar
  42. Sentjabrskaja T, Guu D, Lettinga MP, Egelhaaf SU, Laurati M (2013a) Yielding of binary colloidal glasses. Soft Matter 9:4524–4533.  https://doi.org/10.1039/C3SM27903K CrossRefGoogle Scholar
  43. Sentjabrskaja T, Guu D, Lettinga MP, Egelhaaf SU, Laurati M (2013b) Glasses of dynamically asymmetric binary colloidal mixtures: quiescent properties and dynamics under shear. AIP Conference Proceedings 1518:206–213.  https://doi.org/10.1063/1.4794569 CrossRefGoogle Scholar
  44. Servais C, Jones R, Roberts I (2002) The influence of particle size distribution on the processing of food. J Food Eng 51:201–208.  https://doi.org/10.1016/S0260-8774(01)00056-5 CrossRefGoogle Scholar
  45. Shikata T (2001) Viscoelastic behavior of ideal bimodal suspensions. Chem Eng Sci 56:2957–2966.  https://doi.org/10.1016/S0009-2509(00)00482-6 CrossRefGoogle Scholar
  46. Sikorski M, Sandy A, Narayanan S (2011) Depletion-induced structure and dynamics in bimodal colloidal suspensions. Phys Rev Lett 106:188301.  https://doi.org/10.1103/PhysRevLett.106.188301 CrossRefGoogle Scholar
  47. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  48. Truzzolillo D, Vlassopoulos D, Gauthier M (2013) Rheological detection of caging and solid–liquid transitions in soft colloid–polymer mixtures. J Non-Newtonian Fluid Mech 193:11–20.  https://doi.org/10.1016/j.jnnfm.2012.03.010 CrossRefGoogle Scholar
  49. Voigtmann T (2011) Multiple glasses in asymmetric binary hard spheres. EPL (Europhysics Letters) 96:36006–36009.  https://doi.org/10.1209/0295-5075/96/36006 CrossRefGoogle Scholar
  50. Vrij A (1976) Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl Chem 48:471–483.  https://doi.org/10.1351/pac197648040471 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zahra Daneshfar
    • 1
  • Fatemeh Goharpey
    • 1
    Email author
  • Reza Foudazi
    • 2
  1. 1.Department of Polymer EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Department of Chemical and Materials EngineeringNew Mexico State UniversityLas CrucesUSA

Personalised recommendations