Rheologica Acta

, Volume 57, Issue 2, pp 127–140 | Cite as

A numerical study on nonlinear dynamics of three-dimensional time-depended viscoelastic Taylor-Couette flow

  • M. NorouziEmail author
  • A. Jafari
  • M. Mahmoudi
Original Contribution


In this paper, three-dimensional viscoelastic Taylor-Couette instability between concentric rotating cylinders is studied numerically. The aim is to investigate and provide additional insight about the formation of time-dependent secondary flows in viscoelastic fluids between rotating cylinders. Here, the Giesekus model is used as the constitutive equation. The governing equations are solved using the finite volume method (FVM) and the PISO algorithm is employed for pressure correction. The effects of elasticity number, viscosity ratio, and mobility factor on various instability modes (especially high order ones) are investigated numerically and the origin of Taylor-Couette instability in Giesekus fluids is studied using the order of magnitude technique. The created instability is simulated for large values of fluid elasticity and high orders of nonlinearity. Also, the effect of elastic properties of fluid on the time-dependent secondary flows such as wave family and traveling wave and also on the critical conditions are studied in detail.


Taylor-Couette instability Viscoelastic flow CFD simulation Giesekus model High-order instability modes 

Supplementary material


(WMV 729 kb)


(WMV 841 kb)


(WMV 1146 kb)


(WMV 2776 kb)


  1. Andereck CD, Hayot F (Eds.). (2012). Ordered and turbulent patterns in Taylor-Couette flow (Vol. 297). Springer Science & Business Media.Google Scholar
  2. Andereck CD, Liu SS, Swinney HL (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164(1):155–183. CrossRefGoogle Scholar
  3. Ashrafi N (2011) Stability analysis of shear-thinning flow between rotating cylinders. Appl Math Model 35(9):4407–4423. CrossRefGoogle Scholar
  4. Avgousti M, Beris AN (1993a) Viscoelastic Taylor-Couette flow: bifurcation analysis in the presence of symmetries. Proc R Soc Lond A 443(1917):17–37. CrossRefGoogle Scholar
  5. Avgousti M, Beris AN (1993b) Non-axisymmetric modes in viscoelastic Taylor-Couette flow. J Non-Newtonian Fluid Mech 50(2-3):225–251. CrossRefGoogle Scholar
  6. Baumert BM, Muller SJ (1995) Flow visualization of the elastic Taylor-Couette instability in Boger fluids. Rehologica Acta 34(2):147–159. CrossRefGoogle Scholar
  7. Beard D, Davies M, Walters K (1966) The stability of elastico-viscous flow between rotating cylinders part 3. Overstability in viscous and Maxwell fluids. J Fluid Mech 24(02):321–334. CrossRefGoogle Scholar
  8. Benjamin T, Mullin T (1981) Anomalous modes in the Taylor experiment. Proc R Soc Lond A 377(1770):221–249. CrossRefGoogle Scholar
  9. Carvalho M (2004) Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. J Fluids Eng 126:385–390CrossRefGoogle Scholar
  10. Coronado-Matutti O, Souza Mendes PR, Carvalho MS (2004) Instability of inelastic shear-thinning liquids in a Couette flow between concentric cylinders. J Fluids Eng 126(3):385–390. CrossRefGoogle Scholar
  11. Couette MFA (1890) Etudes sur le frottement des liquides. Ann Chim 21:433–510Google Scholar
  12. Denn M, Roisman J (1969) Rotational stability and measurement of normal stress functions in dilute polymer solutions. AICHE J 15(3):454–459. CrossRefGoogle Scholar
  13. Giesekus H (1966) Zur stabilität von Strömungen viskoelastischer Flüssigkeiten: 1. Ebene und kreisförmige Couette-Strömung. Rheol Acta 5(3):239–252. CrossRefGoogle Scholar
  14. Giesekus H (1982) A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility. Rheol Acta 21(4-5):366–375. CrossRefGoogle Scholar
  15. Jeng J, Zhu K-Q (2010) Numerical simulation of Taylor Couette flow of Bingham fluids. J Non-Newtonian Fluid Mech 165(19-20):1161–1170. CrossRefGoogle Scholar
  16. Khayat RE (1995) Onset of Taylor vortices and chaos in viscoelastic fluids. Phys Fluids 7(9):2191–2219. CrossRefGoogle Scholar
  17. Kupferman R (1998) A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme. SIAM J Sci Comput 20(3):858–877. CrossRefGoogle Scholar
  18. Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31(3):213–263. CrossRefGoogle Scholar
  19. Larson RG, Shaqfeh ES, Muller SJ (1990) A purely elastic instability in Taylor–Couette flow. J Fluid Mech 218(1):573–600. CrossRefGoogle Scholar
  20. Larson R, Muller S, Shaqfeh E (1994) The effect of fluid rheology on the elastic Taylor-Couette instability. J Non-Newtonian Fluid Mech 51(2):195–225. CrossRefGoogle Scholar
  21. Lockett T, Richardson S, Worraker W (1992) The stability of inelastic non-Newtonian fluids in Couette flow between concentric cylinders: a finite-element study. J Non-Newtonian Fluid Mech 43(2-3):165–177. CrossRefGoogle Scholar
  22. Lueptow RM, Docter A, Min K (1992) Stability of axial flow in an annulus with a rotating inner cylinder. Phys Fluids A 4:2446–2455CrossRefGoogle Scholar
  23. Ma T, Wang S (2010) Dynamic transition and pattern formation in Taylor problem. Chin Ann Math Ser B 31(6):953–974. CrossRefGoogle Scholar
  24. Mallock A (1888) Determination of the viscosity of water. Proc R Soc Lond 45(273-279):126–132. CrossRefGoogle Scholar
  25. Muller SJ, Larson RG, Shaqfeh ES (1989) A purely elastic transition in Taylor-Couette flow. Rheol Acta 28(6):499–503. CrossRefGoogle Scholar
  26. Nemri M, Climent E, Charton S, Lanoe J-Y, Ode D (2013) Experimental and numerical investigation on mixing and axial dispersion in Taylor–Couette flow patterns. Chem Eng Res Des 91(12):2346–2354. CrossRefGoogle Scholar
  27. Niu X, Shu C, Chew Y (2003) An axisymmetric lattice Boltzmann model for simulation of Taylor–Couette flows between two concentric cylinders. Int J Mod Phys C 14(06):785–796. CrossRefGoogle Scholar
  28. Norouzi M, Varedi S, Maghrebi MJ, Shahmardan M (2013) Numerical investigation of viscoelastic shedding flow behind a circular cylinder. J Non-Newtonian Fluid Mech 197:31–40. CrossRefGoogle Scholar
  29. Oberkampf WL (2002) Discussion: “comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures” (Stern, F., Wilson, R. V., Coleman, H. W., and Paterson, E. G., 2001, ASME J. Fluids Eng., 123, pp. 793–802). J Fluids Eng 124(3):809–810. CrossRefGoogle Scholar
  30. Philip Z, Mukul M, Martin E (1998) The role of Taylor vortices in the transport of drill cutting, SPE India Oil and Gas Conference and Exhibition. Society of Petroleum EngineersGoogle Scholar
  31. Pourjafar M, Sadeghy K (2012) Taylor-Couette instability of Giesekus fluids. Annu Trans Nordic Rheol Soc 20:97–97Google Scholar
  32. Qi H, Jin H (2006) Unsteady rotating flows of a viscoelastic fluid with the fractional Maxwell model between coaxial cylinders. Acta Mech Sinica 22(4):301–305. CrossRefGoogle Scholar
  33. Quinzani LM, Armstrong RC, Brown RA (1994) Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction. J Non-Newtonian Fluid Mech 52(1):1–36. CrossRefGoogle Scholar
  34. Ravanchi MT, Mirzazadeh M, Rashidi F (2007) Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation. Int J Heat Fluid Flow 28(4):838–845. CrossRefGoogle Scholar
  35. Ravelet F, Delfos R, Westerweel J (2010) Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys Fluids 22(5):055103. CrossRefGoogle Scholar
  36. Rayleigh L (1917) On the dynamics of revolving fluids. Proc R Soc Lond Ser A Contain Pap Math Phys Character 93:148–154CrossRefGoogle Scholar
  37. Recktenwald A, Lücke M, Müller H (1993) Taylor vortex formation in axial through-flow: linear and weakly nonlinear analysis. Phys Rev E 48(6):4444–4454. CrossRefGoogle Scholar
  38. Renardy M, Renardy Y, Sureshkumar R, Beris A (1996) Hopf-Hopf and steady-Hopf mode interactions in Taylor-Couette flow of an upper convected Maxwell liquid. J Non-Newtonian Fluid Mech 63(1):1–31. CrossRefGoogle Scholar
  39. Rubin H, Elata C (1966) Stability of Couette flow of dilute polymer solutions. Phys Fluids 9(10):1929–1933. CrossRefGoogle Scholar
  40. Stern F, Wilson RV, Coleman HW, Paterson EG (2001) Comprehensive approach to verification and validation of CFD simulations-part 1: methodology and procedures. Trans Am Soc Mech Eng J Fluids Eng 123(4):793–802. Google Scholar
  41. Taylor GI (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Character 223:289–343Google Scholar
  42. Thomas D, Al-Mubaiyedh U, Sureshkumar R, Khomami B (2006) Time-dependent simulations of non-axisymmetric patterns in Taylor–Couette flow of dilute polymer solutions. J Non-Newtonian Fluid Mech 138(2-3):111–133. CrossRefGoogle Scholar
  43. Van Gils DP, Huisman SG, Bruggert G-W, Sun C, Lohse D (2011) Torque scaling in turbulent Taylor-Couette flow with co-and counterrotating cylinders. Phys Rev Lett 106(2):024502. CrossRefGoogle Scholar
  44. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education, LondonGoogle Scholar
  45. Xue S-C, Phan-Thien N, Tanner R (1998) Three dimensional numerical simulations of viscoelastic flows through planar contractions. J Non-Newtonian Fluid Mech 74(1-3):195–245. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentShahrood University of TechnologyShahroodIran
  2. 2.Mechanical Engineering DepartmentIsfahan University of TechnologyIsfahanIran

Personalised recommendations