Rheologica Acta

, Volume 56, Issue 10, pp 825–840 | Cite as

Suspensions of titania nanoparticle networks in nematic liquid crystals: rheology and microstructure

  • Siddharth Kulkarni
  • Prachi TharejaEmail author
Original Contribution


We study the influence of confinement on the rheology and structure of nematic liquid crystals (NLCs). NLCs get confined in networks of titania (TiO2, primary particle size = 21 nm) nanoparticles in suspensions of TiO2 and NLC, N-(4-methoxybenzylidene)-4-butylaniline (MBBA). Suspensions with TiO2 nanoparticle volume fraction (ϕ) of 0.006–0.017, form viscoelastic solids with low elastic modulus (G′) of 101 Pa–102 Pa and short relaxation times. Increase in TiO2 nanoparticle ϕ leads to a rise in G′ with TiO2 nanoparticles forming a percolating network at a critical volume fraction (ϕ c) = 0.023, and G′ of ~103 Pa. TiO2/MBBA NLC suspensions at and above ϕ c = 0.023 show G′ ~ ω x−1 scaling, where ω is the angular frequency and the minimum in loss modulus (G′′) with ω. The effective noise temperature, x decreases and approaches 1 with the increase in the TiO2 nanoparticle ϕ from 0.023–0.035, is indicative of an increase in the glassy dynamics. Through the polarized light microscopy and differential scanning calorimetry experiments, we propose that the progressive addition of TiO2 nanoparticles introduces a quenched random disorder (QRD) in the NLC medium which disturbs the nematic order. This results in metastable TiO2/MBBA NLC suspensions in which NLC domains get confined in the network of flocs of TiO2 nanoparticles. We also show that the salient rheological signatures of soft glassy rheology develop only in the presence of NLC MBBA and are absent in the isotropic phase of MBBA.


Nematic liquid crystals Soft glassy rheology Quenched random disorder 



Prachi Thareja acknowledges Science and Engineering Research Board (SERB), Department of Science and Technology, ( grant # EMR/2016/003840), New Delhi, for funding this work. The authors also thank Sophia Varghese and Sanat Chandra Maiti for the assistance provided for performing the DSC measurements. The authors acknowledge the help provided by the Central Research Facility of IIT Gandhinagar for the SEM imaging.

Supplementary material

397_2017_1039_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1874 kb)


  1. Aliev F, Kreuzer M, Tabiryan N, Zel'dovich B (1998) Light scattering and photon correlation spectroscopy of filled and confined liquid crystals. Mol Cryst Liq Cryst 320:173–191. CrossRefGoogle Scholar
  2. Aliev FM, Arroyo EF, Dolidze V (2010) Influence of confinement on molecular and director reorientational dynamics of liquid crystal. J Non-Cryst Solids 356:657–660. CrossRefGoogle Scholar
  3. Aliev FM, Bengoechea MR, Gao CY, Cochran HD, Dai S (2005) Dielectric relaxation in liquid crystals confined in a quasi-one-dimensional system. J Non-Cryst Solids 351:2690–2693. CrossRefGoogle Scholar
  4. Anderson V, Terentjev E (2001) Cellular solid behaviour of liquid crystal colloids 2. Mechanical properties. Eur Phys J E 4:21–28. CrossRefGoogle Scholar
  5. Anderson VJ, Terentjev EM, Meeker SP, Crain J, Poon WCK (2001) Cellular solid behaviour of liquid crystal colloids 1. Phase separation and morphology. Eur Phys J E 4:11–20. CrossRefGoogle Scholar
  6. Bandyopadhyay R, Liang D, Colby RH, Harden JL, Leheny RL (2005) Enhanced elasticity and soft glassy rheology of a smectic in a random porous environment. Phys Rev Lett 94:107801. CrossRefGoogle Scholar
  7. Basappa G, Kumaran S, Nott PR, Ramaswamy S, Naik V, Rout D (1999) Structure and rheology of the defect-gel states of pure and particle-dispersed lyotropic lamellar phases. Eur Phys J B 12:269–276. CrossRefGoogle Scholar
  8. Batalla B, Sinha G, Aliev F (1999) Dynamics of molecular motion of nematic liquid crystal confined in cylindrical pores. Mol Cryst Liq Cryst 331:121–128. CrossRefGoogle Scholar
  9. Bellini T, Clark NA, Muzny CD, Wu L, Garland CW, Schaefer DW, Oliver BJ (1992) Phase behavior of the liquid crystal 8CB in a silica aerogel. Phys Rev Lett 69:788–791. CrossRefGoogle Scholar
  10. Bellini T, Radzihovsky L, Toner J, Clark NA (2001) Universality and scaling in the disordering of a smectic liquid crystal. Science 294:1074–1079. CrossRefGoogle Scholar
  11. Béneut K, Constantin D, Davidson P, Dessombz A, Chanéac C (2008) Magnetic nanorods confined in a lamellar lyotropic phase. Langmuir 24:8205–8209. CrossRefGoogle Scholar
  12. Brás AR, Dionísio M, Schönhals A (2008) Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy. J Phys Chem B 112:8227–8235. CrossRefGoogle Scholar
  13. Caggioni M, Roshi A, Barjami S, Mantegazza F, Iannacchione GS, Bellini T (2004) Isotropic to nematic transition of aerosil-disordered liquid crystals. Phys Rev Lett 93:127801. CrossRefGoogle Scholar
  14. Chen-Yu T, Sheng-Miao H, Wei L (2011) Electrical properties of nematic liquid crystals doped with anatase TiO2 nanoparticles. J Phys D Appl Phys 44:355102. CrossRefGoogle Scholar
  15. Clegg PS, Stock C, Birgeneau RJ, Garland CW, Roshi A, Iannacchione GS (2003) Effect of a quenched random field on a continuous symmetry breaking transition: nematic to smectic-A transition in octyloxycyanobiphenyl-aerosil dispersions. Phy Rev E 67:021703. CrossRefGoogle Scholar
  16. Constantin D, Davidson P, Chanéac C (2010) Lyotropic lamellar phase doped with a nematic phase of magnetic nanorods. Langmuir 26:4586–4589. CrossRefGoogle Scholar
  17. Cordoyiannis G, Kralj S, Nounesis G, Kutnjak Z, Žumer S (2007) Pretransitional effects near the smectic-A–smectic-C* phase transition of hydrophilic and hydrophobic aerosil networks dispersed in ferroelectric liquid crystals. Phy Rev E 75:021702. CrossRefGoogle Scholar
  18. Cordoyiannis G, Nounesis G, Bobnar V, Kralj S, Kutnjak Z (2005) Confinement-induced orientational order in a ferroelectric liquid crystal containing dispersed aerosils. Phys Rev Lett 94:027801. CrossRefGoogle Scholar
  19. Crawford GP, Zumer S (1996) Liquid crystals in complex geometries: formed by polymer and porous networks. CRC Press,Google Scholar
  20. Dadmun MD, Muthukumar M (1993) The nematic to isotropic transition of a liquid crystal in porous media. J Chem Phys 98:4850–4852. CrossRefGoogle Scholar
  21. Dalir N, Javadian S, Gilani AG (2015) The ferroelectricity effect of nanoparticles on thermodynamics and electro-optics of novel cyanobiphenyl eutectic binary mixture liquid crystals. J Mol Liq 209:336–345. CrossRefGoogle Scholar
  22. Domenech T, Velankar SS (2015) On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter 11:1500–1516. CrossRefGoogle Scholar
  23. Frunza S, Frunza L, Schoenhals A, Zubowa H-L, Kosslick H, Carius H-E, Fricke R (1999) On the confinement of liquid crystals in molecular sieves: dielectric measurements. Chem Phys Lett 307:167–176. CrossRefGoogle Scholar
  24. Graugnard E, King JS, Jain S, Summers CJ, Zhang-Williams Y, Khoo IC (2005) Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals. Phys Rev B 72:233105. CrossRefGoogle Scholar
  25. Grigoriadis C, Duran H, Steinhart M, Kappl M, Butt H-J, Floudas G (2011) Suppression of phase transitions in a confined rodlike liquid crystal. ACS Nano 5:9208–9215. CrossRefGoogle Scholar
  26. Grinberg F, Kimmich R (1996) Pore size dependence of the dipolar-correlation effect on the stimulated echo in liquid crystals confined in porous glass. J Chem Phys 105:3301–3306. CrossRefGoogle Scholar
  27. Helgeson ME, Wagner NJ, Vlassopoulos D (2007) Viscoelasticity and shear melting of colloidal star polymer glasses. J Rheol 51:297–316. CrossRefGoogle Scholar
  28. Iannacchione GS, Garland CW, Mang JT, Rieker TP (1998) Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phy Rev E 58:5966–5981. CrossRefGoogle Scholar
  29. Janik J, Meher J, Sciesinska E, Sciesinski J, Twardowski J, Waluga T, Witko W (1975) Calorimetric and infra-red study of the phase situation in solid MBBA. J Phys Colloques 36:C1-159–C151-165. CrossRefGoogle Scholar
  30. Jayalakshmi V, Geetha GN, Prasad SK (2007) Effect of aerosil dispersions on the photoinduced nematic–isotropic transition. J Phys Condens Matter 19:226213. CrossRefGoogle Scholar
  31. Jin T, Finotello D (2001) Aerosil dispersed in a liquid crystal: magnetic order and random silica disorder. Phys Rev Lett 86:818–821. CrossRefGoogle Scholar
  32. Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7:2456–2470. CrossRefGoogle Scholar
  33. Kulkarni S, Thareja P (2016) Rheology of colloidal particles in lyotropic hexagonal liquid crystals: the role of particle loading, shape, and phase transition kinetics. Rheol Acta 55:23–36. CrossRefGoogle Scholar
  34. Kulkarni S, Verma A, Mishra NS, Thareja P (2017) Partitioning and self-assembly of silica and hematite particles at grain boundaries of hexagonal liquid crystals: implications on rheology. J Rheol 61:311–325. CrossRefGoogle Scholar
  35. Kumar MV, Prasad SK (2012) Influence of quenched disorder created by nanosilica network on phase transitions in tetracosane. RSC Adv 2:8531–8538. CrossRefGoogle Scholar
  36. Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55:673–706. CrossRefGoogle Scholar
  37. Lee WK, Choi JH, Na HJ, Lim JH, Han JM, Hwang JY, Seo DS (2009) Low-power operation of vertically aligned liquid-crystal system via anatase-TiO2 nanoparticle dispersion. Opt Lett 34:3653–3655. CrossRefGoogle Scholar
  38. Leheny RL, Park S, Birgeneau RJ, Gallani JL, Garland CW, Iannacchione GS (2003) Smectic ordering in liquid-crystal–aerosil dispersions. I X-ray scattering Phys Rev E 67:011708. CrossRefGoogle Scholar
  39. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773. CrossRefGoogle Scholar
  40. Meeker S, Poon W, Crain J, Terentjev E (2000) Colloid–liquid-crystal composites: An unusual soft solid. Phys Rev E 61:R6083. CrossRefGoogle Scholar
  41. Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. EPL (Europhysics Letters) 75:915–921. CrossRefGoogle Scholar
  42. Nair GG, Bhargavi R (2012) Anomalously large bend elastic constant and faster electro-optic response in soft glassy gels formed by a dipeptide. Solid State Phenom 181–182:14–21. Google Scholar
  43. Nair GG, Prasad SK, Bhargavi R, Jayalakshmi V, Shanker G, Yelamaggad CV (2010) Soft glass rheology in liquid crystalline gels formed by a monodisperse dipeptide. J Phys Chem B 114:697–704. CrossRefGoogle Scholar
  44. Ojha A, Thakker M, Shah DO, Thareja P (2016) Flow-directed assembly of non-spherical titania nanoparticles into superhydrophilic thin films. Front Mater Sci 10:1–7. CrossRefGoogle Scholar
  45. Park S, Leheny RL, Birgeneau RJ, Gallani JL, Garland CW, Iannacchione GS (2002) Hydrogen-bonded silica gels dispersed in a smectic liquid crystal: a random field XY system. Phys Rev E E 65:050703. CrossRefGoogle Scholar
  46. Parthasarathy M, Klingenberg DJ (1999) Large amplitude oscillatory shear of ER suspensions. J Non-Newtonian Fluid Mech 81:83–104. CrossRefGoogle Scholar
  47. Petrov PG, Terentjev EM (2001) Formation of cellular solid in liquid crystal colloids. Langmuir 17:2942–2949. CrossRefGoogle Scholar
  48. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. EPL (Europhysics Letters) 75:624–630. CrossRefGoogle Scholar
  49. Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in anisotropic fluids. Science 275:1770–1773. CrossRefGoogle Scholar
  50. Prasad SK, Kumar MV, Shilpa T, Yelamaggad CV (2014) Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal. RSC Adv 4:4453–4462. CrossRefGoogle Scholar
  51. Radzihovsky L, Toner J (1999) Smectic liquid crystals in random environments. Phys Rev B 60:206–257. CrossRefGoogle Scholar
  52. Roshi A, Iannacchione GS, Clegg PS, Birgeneau RJ (2004) Evolution of the isotropic-to-nematic phase transition in octyloxycyanobiphenyl+aerosil dispersions. Phys Rev E 69:031703. CrossRefGoogle Scholar
  53. Salamat G, Kaler EW (1999) Colloidal dispersions in lyotropic lamellar phases. Langmuir 15:5414–5421. CrossRefGoogle Scholar
  54. Sens P, Turner MS, Pincus P (1997) Particulate inclusions in a lamellar phase. Phys Rev E 55:4394–4405. CrossRefGoogle Scholar
  55. Sharma KP, Ganai AK, Gupta SS, Kumaraswamy G (2011) Self-standing three-dimensional networks of nanoparticles with controllable morphology by dynamic templating of surfactant hexagonal domains. Chem Mater 23:1448–1455. CrossRefGoogle Scholar
  56. Sharma KP, Ganai AK, Sen D, Prasad BL, Kumaraswamy G (2013) Exclusion from hexagonal mesophase surfactant domains drives end-to-end enchainment of rod-like particles. J Phys Chem B 117:12661–12668. CrossRefGoogle Scholar
  57. Sharma KP, Kumaraswamy G, Ly I, Mondain-Monval O (2009) Self-assembly of silica particles in a nonionic surfactant hexagonal mesophase. J Phys Chem B 113:3423–3430. CrossRefGoogle Scholar
  58. Sharma M, Sinha A, Shenoy MR (2015) Effect of TiO2 nanoparticle doping on the performance of electrically-controlled nematic liquid crystal core waveguide switch. Opt Mater 49:292–296. CrossRefGoogle Scholar
  59. Shukla A, Arnipally S, Dagaonkar M, Joshi YM (2015) Two-step yielding in surfactant suspension pastes. Rheol Acta 54:353–364. CrossRefGoogle Scholar
  60. Sinha G, Aliev F (2001) Glass-like relaxation in confined liquid crystals. Mol Cryst Liq Cryst 358:155–166. CrossRefGoogle Scholar
  61. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738–759. CrossRefGoogle Scholar
  62. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023. CrossRefGoogle Scholar
  63. Tsu-Ruey C, Jung H, Wei-Ting C, Chih-Yu C (2014) Influence of particle size on the ion effect of TiO2 nanoparticle doped nematic liquid crystal cell. Jpn J Appl Phys 53:071701. CrossRefGoogle Scholar
  64. Vollmer D, Hinze G, Ullrich B, Poon WC, Cates ME, Schofield AB (2005) Formation of self-supporting reversible cellular networks in suspensions of colloids and liquid crystals. Langmuir 21:4921–4930. CrossRefGoogle Scholar
  65. Wei-Ting C, Pei-Shiang C, Chih-Yu C (2009) Effect of doped insulating nanoparticles on the electro-optical characteristics of nematic liquid crystals. Jpn J Appl Phys 53(071701 48):015006. Google Scholar
  66. Winter HH (2013) Glass transition as the rheological inverse of gelation. Macromolecules 46:2425–2432. CrossRefGoogle Scholar
  67. Wu P-C, Yang S-Y, Lee W (2016) Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles. J Mol Liq 218:150–155. CrossRefGoogle Scholar
  68. Yadav SP, Manohar R, Singh S (2015) Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liq Cryst 42:1095–1101. CrossRefGoogle Scholar
  69. Yamamoto T, Kawata Y, Yoshida M (2013) Contrasting roles of layered structures in the molecular assembly of liquid crystal matrices on the viscoelastic properties of microparticle/liquid crystal composite gels leading to rigidification and destabilization. J Colloid Interface Sci 397:131–136. CrossRefGoogle Scholar
  70. Yamamoto T, Yoshida M (2012) Viscoelastic and photoresponsive properties of microparticle/liquid-crystal composite gels: tunable mechanical strength along with rapid-recovery nature and photochemical surface healing using an azobenzene dopant. Langmuir 28:8463–8469. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chemical EngineeringIndian Institute of Technology, GandhinagarGandhinagarIndia

Personalised recommendations