Rheologica Acta

, Volume 56, Issue 7–8, pp 661–671 | Cite as

Small-diameter parallel plate rheometry: a simple technique for measuring rheological properties of glass-forming liquids in shear

  • Olli-Ville Laukkanen
Original Contribution


The rheological characterization of glass-forming liquids is challenging due to their extreme temperature dependence and high stiffness at low temperatures. This study focuses on the special precautions that need to be taken to accommodate high sample stiffness and torsional instrument compliance in shear rheological experiments. The measurement errors due to the instrument compliance can be avoided by employing small-diameter parallel plate (SDPP) rheometry in combination of numerical instrument compliance corrections. Measurements of that type demonstrate that accurate and reliable rheological data can be obtained by SDPP rheometry despite unusually small diameter-to-gap (d/h) ratios. Specimen preparation for SDPP requires special attention, but then experiments show excellent repeatability. Advantages and some current applications of SDPP rheometry are briefly reviewed. SDPP rheometry is seen as a simple and versatile way to measure rheological properties of glass-forming liquids especially near their glass transition temperature.


Rheometry Glass-forming liquids Instrument compliance Measurement repeatability 



Financial support from the Vilho, Yrjö, and Kalle Väisälä Foundation is gratefully acknowledged. The author also wishes to thank Anton Paar GmbH and Malvern Instruments Ltd. for technical support and equipment loans, Prof. Gregory McKenna and Dr. Stephen Hutcheson for providing plate diameter-dependent rheological data of glycerol, and Prof. H. Henning Winter for helping in the preparation of the manuscript.


  1. Christensen T, Olsen NB (1995) A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz. Rev Sci Instrum 66(10):5019–5031CrossRefGoogle Scholar
  2. Dessi C, Tsibidis GD, Vlassopoulos D, De Corato M, Trofa M, D’Avino G, Maffettone PL, Coppola S (2016) Analysis of dynamic mechanical response in torsion. J Rheol 60(2):275–287CrossRefGoogle Scholar
  3. Ewoldt RH, Johnston MT, Caretta LM (2015) Experimental challenges of shear rheology: how to avoid bad data. In: Spagnolie SE (ed) Complex fluids in biological systems. Springer, Berlin, pp 207–241Google Scholar
  4. Farrar M, Sui C, Salmans S, Qin Q (2015) Determining the low temperature rheological properties of asphalt binder using a dynamic shear rheometer (DSR). Technical White Paper FP08 Prepared by Western Research Institute for the Federal Highway Administration, Contract no. DTFH61–07-D-00005, Fundamental Properties of Asphalts and Modified Asphalts, III.Google Scholar
  5. Franck A (2006) Understanding instrument compliance correction in oscillation. TA Instruments Product Note APN 013Google Scholar
  6. Gottlieb M, Macosko C (1982) The effect of instrument compliance on dynamic rheological measurements. Rheol Acta 21(1):90–94CrossRefGoogle Scholar
  7. Harrison G (1976) The dynamic properties of supercooled liquids. Academic Press, London, p 112Google Scholar
  8. Hutcheson S, McKenna G (2008) The measurement of mechanical properties of glycerol, m-toluidine, and sucrose benzoate under consideration of corrected rheometer compliance: an in-depth study and review. J Chem Phys 129(7):074502Google Scholar
  9. Inoue T, Matsumoto A, Nakamura K (2013) Dynamic viscoelasticity and birefringence of poly (ionic liquids) in the vicinity of glass transition zone. Macromolecules 46(15):6104–6109CrossRefGoogle Scholar
  10. Kohlrausch R (1854) Theorie Des Elektrischen Rückstandes in Der Leidener Flasche. Ann Phys 167(2):179–214CrossRefGoogle Scholar
  11. Läuger J, Stettin H (2016) Effects of instrument and fluid inertia in oscillatory shear in rotational rheometers. J Rheol 60(3):393–406CrossRefGoogle Scholar
  12. Läuger J (2010) Radial compliance in oscillatory measurements. Technical Note, Anton Paar RheometersGoogle Scholar
  13. Laukkanen OV, Winter HH, Soenen H, Seppälä J (2017) From simple to complex glass-forming liquids: broadening of the glass transition as studied by shear rheology. Annu Trans Nord Rheol Soc 25:157–161Google Scholar
  14. Laukkanen OV, Winter HH, Soenen H, Seppälä J (2016a) Rheological characterization of styrene-butadiene-styrene block copolymer modified bitumens. Annu Trans Nord Rheol Soc 24:53–57Google Scholar
  15. Laukkanen OV, Winter HH, Soenen H, Seppälä J (2016b) Rheological analysis of bitumen as a complex glass-forming liquid and comparison with some simple glass-forming liquids. Annu Trans Nord Rheol Soc 24:17–21Google Scholar
  16. Laukkanen OV (2015) Low-temperature rheology of bitumen and its relationship with chemical and thermal properties. Master’s thesis. Aalto University, Espoo, FinlandGoogle Scholar
  17. Laukkanen OV, Winter HH, Soenen H (2015) Rheological analysis of the low-temperature dynamics of bitumens. Annu Trans Nord Rheol Soc 23:23–26Google Scholar
  18. Liu C, Yao M, Garritano RG, Franck AJ, Bailly C (2011) Instrument compliance effects revisited: linear viscoelastic measurements. Rheol Acta 50(5–6):537–546CrossRefGoogle Scholar
  19. Lu X, Uhlback P, Soenen H (2016) Investigation of bitumen low temperature properties using a dynamic shear rheometer with 4mm parallel plates. Int J Pavement Res Technol. doi: 10.1016/j.ijprt.2016.08.010
  20. Lu X, Soenen H, Redelius P (2011) Rheological characterization of polymer modified bitumens. Ann Trans Nordic Rheol Soc 19:77–84Google Scholar
  21. Macosko C, Davis W (1974) Dynamic mechanical measurements with the eccentric rotating disks flow. Rheol Acta 13(4–5):814–829CrossRefGoogle Scholar
  22. Maeda A, Inoue T, Sato T (2013) Dynamic segment size of the cellulose chain in an ionic liquid. Macromolecules 46(17):7118–7124CrossRefGoogle Scholar
  23. Marin G (1988) Oscillatory rheometry. In: Collyer AA, Clegg DW (eds) Rheological measurements. Elsevier, London, UK, pp 297–343Google Scholar
  24. Möbius M, Xia T, van Saarloos W, Orrit M, Van Hecke M (2010) Aging and solidification of supercooled glycerol. J Phys Chem B 114(22):7439–7444CrossRefGoogle Scholar
  25. Nill T (2014) Extended application report: measurement of glycerol in the glassy state. Investigation and correction of instrument radial compliance. Application report, Anton Paar Germany GmbHGoogle Scholar
  26. Piccirelli R, Litovitz T (1957) Ultrasonic shear and compressional relaxation in liquid glycerol. J Acoust Soc Am 29(9):1009–1020CrossRefGoogle Scholar
  27. Pogodina N, Nowak M, Läuger J, Klein C, Wilhelm M, Friedrich C (2011) Molecular dynamics of ionic liquids as probed by rheology. J Rheol 55(2):241–256CrossRefGoogle Scholar
  28. Rides M, Olusanya A (1996) Appendix a.2. Compliance correction. In: Olusanya A (ed) A comparison of techniques for monitoring the cure of adhesives. MTS Adhesives Project 5, Measurements for Optimising Adhesives Processing Report 10, NPL Report CMMT(B104). National Physical Laboratory, Teddington, Middlesex, UK, pp 33–39Google Scholar
  29. Scarponi F, Comez L, Fioretto D, Palmieri L (2004) Brillouin light scattering from transverse and longitudinal acoustic waves in glycerol. Phys Rev B 70(5):054203CrossRefGoogle Scholar
  30. Schrag JL (1977) Deviation of velocity gradient profiles from the “gap loading” and “surface loading” limits in dynamic simple shear experiments. Trans Soc Rheol 21(3):399–413CrossRefGoogle Scholar
  31. Schröter K, Hutcheson S, Shi X, Mandanici A, McKenna G (2006) Dynamic shear modulus of glycerol: corrections due to instrument compliance. J Chem Phys 125(21):214507CrossRefGoogle Scholar
  32. Schröter K, Donth E (2000) Viscosity and shear response at the dynamic glass transition of glycerol. J Chem Phys 113(20):9101–9108CrossRefGoogle Scholar
  33. Shi X, Mandanici A, McKenna GB (2005) Shear stress relaxation and physical aging study on simple glass-forming materials. J Chem Phys 123(17):174507CrossRefGoogle Scholar
  34. Soenen H, Lu X, Redelius P (2008) The morphology of bitumen-SBS blends by UV microscopy: an evaluation of preparation methods. Road Mater Pavement 9(1):97–110Google Scholar
  35. Sui C, Farrar MJ, Harnsberger PM, Tuminello WH, Turner TF (2011) New low-temperature performance-grading method. Transp Res Rec 2207(1):43–48CrossRefGoogle Scholar
  36. Sui C, Farrar MJ, Tuminello WH, Turner TF (2010) New technique for measuring low-temperature properties of asphalt binders with small amounts of material. Transp Res Rec 2179(1):23–28CrossRefGoogle Scholar
  37. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85CrossRefGoogle Scholar
  38. Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non Newtonian Fluid Mech 68(2–3):225–239CrossRefGoogle Scholar
  39. Xia T, Xu J, Huang T, He J, Zhang Y, Guo J, Li Y (2016) Viscoelastic phase behavior in SBS modified bitumen studied by morphology evolution and viscoelasticity change. Constr Build Mater 105:589–594CrossRefGoogle Scholar
  40. Zhu J, Lu X, Balieu R, Kringos N (2016a) Modelling and numerical simulation of phase separation in polymer modified bitumen by phase-field method. Mater Des 107:322–332CrossRefGoogle Scholar
  41. Zhu J, Lu X, Kringos N (2016b) Experimental investigation on storage stability and phase separation behaviour of polymer-modified bitumen. Int J Pavement Eng

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering and Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA
  2. 2.Department of Chemical and Metallurgical Engineering, School of Chemical TechnologyAalto UniversityAaltoFinland

Personalised recommendations