Rheologica Acta

, Volume 56, Issue 2, pp 95–111

Rheological behaviour of a high-melt-strength polypropylene at elevated pressure and gas loading for foaming purposes

  • Daniel Raps
  • Thomas Köppl
  • Lutz Heymann
  • Volker Altstädt
Original Contribution

Abstract

The rheological properties of a long chain branched polypropylene (LCB-PP) were investigated at the processing conditions of foam extrusion, namely high pressure, gas loading and high shear rates, as well as in elongational deformation. For measuring the rheological properties of PP at moderate and high deformation rates, an in-line rheometer was used. Comparison of the results to standard rotational rheometry showed good agreement. The effect of the processing parameters was quantified using shift factors for temperature, pressure and gas concentration. The influence of pressure on the shear viscosity was found to be of minor importance. In contrast, the shear viscosity was distinctly affected by CO2 concentration, reducing it to one third of its gas-free value at a concentration of 6 wt% at a specific shear rate. The change of viscosity by a variation of temperature is similar in magnitude compared to the variation due to dissolved blowing agent. Furthermore, thermo-rheological complex behaviour was observed. In the foaming process, thermo-rheological complexity could contribute to a better morphology control of long chain branched polymers compared to linear ones. The elongational viscosity was measured using both a hyperbolic die and a film stretching tool (UXF) for comparison. It is almost three decades higher than the shear viscosity in the non-linear region, due to pronounced strain hardening of the melt.

Keywords

Rheology Polypropylene Long chain branching Carbon-dioxide High pressure Pressure cell In-line rheometry 

References

  1. Aho J, Syrjälä S (2010) Measurement of the pressure dependence of viscosity of polymer melts using a back pressure-regulated capillary rheometer. J Appl Polym Sci 117:1076–1084. doi:10.1002/app.31754 CrossRefGoogle Scholar
  2. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift fuer Phys Chemie 4:226–248Google Scholar
  3. Baird D, Huang J-C (2006) Elongational viscosity measurements using a semi-hyperbolic die. Appl Rheol 16:312Google Scholar
  4. Barus C (1893) Isothermals, isopiestics, and isometrics relative to viscosity. Am J Sci 45:87–96CrossRefGoogle Scholar
  5. Borealis (2010) Daploy WB140HMS, Techn. reportGoogle Scholar
  6. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity. Springer US, Boston, MACrossRefGoogle Scholar
  7. Carella JM, Gotro JT, Graessley WW (1986) Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 19:659–667. doi:10.1021/ma00157a031 CrossRefGoogle Scholar
  8. Choudhary M (2005) Measurement of shear viscosity and solubility of polystyrene melts containing various blowing agents. J Cell Plast 41:589–599. doi:10.1177/0021955X05059036 CrossRefGoogle Scholar
  9. Cogswell N (1972) Converging flow of polymer melts in extrusion diesGoogle Scholar
  10. Collier JR, Petrovan S, Patil P (2003) Temperature shifting of convergent flow measured effective elongational viscosity. J Appl Polym Sci 87:1387–1396. doi:10.1002/app.11477 CrossRefGoogle Scholar
  11. Collier JR, Petrovan S, Hudson N, Wei X (2007) Elongational rheology by different methods and orientation number. J Appl Polym Sci 105:3551–3561. doi:10.1002/app.26413 CrossRefGoogle Scholar
  12. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford, ISBN 0-19-852033–6Google Scholar
  13. Doroudiani S, Kortschot MT (2003) Polystyrene foams. III Structure-tensile properties relationships J Appl Polym Sci 90:1427–1434. doi:10.1002/app.12806 Google Scholar
  14. Eckstein A, Suhm J, Friedrich C, et al. (1998) Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. 9297:1335–1340. doi: 10.1021/ma971270d
  15. Fang H, Zhang Y, Bai J et al (2013) Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Adv 3:8783–8795. doi:10.1039/c3ra40879e CrossRefGoogle Scholar
  16. Feng JJ, Bertelo C a (2004) Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. J Rheol (N Y N Y) 48:439. doi:10.1122/1.1645518 CrossRefGoogle Scholar
  17. Ferkl P, Pokorný R, Bobák M, Kosek J (2013) Heat transfer in one-dimensional micro- and nano-cellular foams. Chem Eng Sci 97:50–58. doi:10.1016/j.ces.2013.04.018 CrossRefGoogle Scholar
  18. Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol (N Y N Y) 43:1355. doi:10.1122/1.551048 CrossRefGoogle Scholar
  19. Ferry JD (1950) Mechanical properties of substances of high molecular weight. VI Dispersion in Concentrated Polymer Solutions and its Dependence on Temperature and Concentration J Am Chem Soc 72:3746–3752. doi:10.1021/ja01164a117 Google Scholar
  20. Fujita H, Kishimoto A (1958) Diffusion-controlled stress relaxation in polymers. II Stress relaxation in swollen polymers J Polym Sci 28:547–567. doi:10.1002/pol.1958.1202811806 Google Scholar
  21. Gerhardt LJ, Garg A, Manke CW, Gulari E (1998) Concentration-dependent viscoelastic scaling models for Polydimethysiloxane melts with dissolved carbon dioxide. J Polym Sci Part B Polym Phys 36:1911–1918CrossRefGoogle Scholar
  22. Han CD (2007) Rheology and processing of polymeric materials volume 1: rheologyGoogle Scholar
  23. Handge UA, Altstädt V (2012) Viscoelastic properties of solutions of polystyrene melts and carbon dioxide: analysis of a transient shear rheology approach. J Rheol (N Y N Y) 56:743. doi:10.1122/1.4708601 CrossRefGoogle Scholar
  24. Hasan MM, Li YG, Li G et al (2010) Determination of solubilities of CO2 in linear and branched polypropylene using a magnetic suspension balance and a PVT apparatus. J Chem Eng Data 55:4885–4895. doi:10.1021/je100488v CrossRefGoogle Scholar
  25. Keßner UM (2010) Thermorheology as a method to investigate the branching structures of Polyethylenes. Universität Erlangen-NürnbergGoogle Scholar
  26. Köppl T, Raps D, Altstädt V (2014) E-PBT—bead foaming of poly(butylene terephthalate) by underwater pelletizing. J Cell Plast 50:475–487. doi:10.1177/0021955X14528524 CrossRefGoogle Scholar
  27. Kwag C, Manke CW, Gulari E (2001) Effects of dissolved gas on viscoelastic scaling and glass transition temperature of polystyrene melts. Ind Eng Chem Res 40:3048–3052. doi:10.1021/ie000680e CrossRefGoogle Scholar
  28. Ladin D, Park CB, Park SS et al (2001) Study of shear and extensional viscosities of biodegradable PBS/CO 2 solutions. J Cell Plast 37:109–148. doi:10.1106/72D3-9PX6-7C60-RD2X CrossRefGoogle Scholar
  29. Lee M, Tzoganakis C, Park CB (1998) Extrusion of PE/PS blends with supercritical carbon dioxide. Polym Eng Sci 38:1112–1120. doi:10.1002/pen.10278 CrossRefGoogle Scholar
  30. Li YG, Park CB (2009) Effects of branching on the pressure−volume−temperature behaviors of PP/CO 2 solutions. Ind Eng Chem Res 48:6633–6640. doi:10.1021/ie8015279 CrossRefGoogle Scholar
  31. Liu G, Sun H, Rangou S et al (2012) Studying the origin of “strain hardening”: basic difference between extension and shear. J Rheol 57:89–104. doi:10.1122/1.4763568 CrossRefGoogle Scholar
  32. Malmberg A, Liimatta J, Lehtinen A, Löfgren B (1999) Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 32:6687–6696. doi:10.1021/ma9907136 CrossRefGoogle Scholar
  33. McCallum TJ, Kontopoulou M, Park CB et al (2007) The rheological and physical properties of linear and branched polypropylene blends. Polym Eng Sci 47:1133–1140. doi:10.1002/pen.20798 CrossRefGoogle Scholar
  34. Münstedt H (2011) Rheological properties and molecular structure of polymer melts. Soft Matter 7:2273. doi:10.1039/c0sm00891e CrossRefGoogle Scholar
  35. Münstedt H, Laun HM (1979) Elongational behaviour of a low density polyethylene melt. Rheol Acta 18:492–504. doi:10.1007/BF01736955 CrossRefGoogle Scholar
  36. Muzychka YS, Edge J (2008) Laminar non-Newtonian fluid flow in noncircular ducts and microchannels. J Fluids Eng 130:111201. doi:10.1115/1.2979005 CrossRefGoogle Scholar
  37. Nobelen M, Hoppe S, Fonteix C et al (2006) Modeling of the rheological behavior of polyethylene/supercritical solutions. Chem Eng Sci 61:5334–5345. doi:10.1016/j.ces.2006.03.052 CrossRefGoogle Scholar
  38. Park HE, Dealy JM (2006) Effects of pressure and supercritical fluids on the viscosity of polyethylene. Macromolecules 39:5438–5452. doi:10.1021/ma060735+ CrossRefGoogle Scholar
  39. Rachtanapun P, Selke SEM, Matuana LM (2004) Relationship between cell morphology and impact strength of microcellular foamed high-density polyethylene/polypropylene blends. Polym Eng Sci 44:1551–1560. doi:10.1002/pen.20152 CrossRefGoogle Scholar
  40. Ramesh NS, Lee ST (2000) Blowing agent effect on extensional viscosity calculated from fiber spinning method for foam processing. J Cell Plast 36:374–385. doi:10.1106/W3LI-MTQY-PJA9-RNJB CrossRefGoogle Scholar
  41. Raps D, Köppl T, de Anda AR, Altstädt V (2014) Rheological and crystallisation behaviour of high melt strength polypropylene under gas-loading. Polymer (Guildf) 55:1537–1545. doi:10.1016/j.polymer.2014.01.036 CrossRefGoogle Scholar
  42. Resch J a, Keßner U, Stadler FJ (2011) Thermorheological behavior of polyethylene: a sensitive probe to molecular structure. Rheol Acta 50:559–575. doi:10.1007/s00397-011-0575-9 CrossRefGoogle Scholar
  43. Rojo E, Muñoz ME, Santamaría A, Peña B (2004) Correlation between conformational parameters and rheological properties of molten syndiotactic polypropylenes. Macromol Rapid Commun 25:1314–1318. doi:10.1002/marc.200400138 CrossRefGoogle Scholar
  44. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272. doi:10.1063/1.1699180 CrossRefGoogle Scholar
  45. Royer JR, Gay YJ, Desimone JM, Khan S a (2000) High-pressure rheology of polystyrene melts plasticized with CO2: experimental measurement and predictive scaling relationships. J Polym Sci Part B Polym Phys 38:3168–3180. doi:10.1002/1099-0488(20001201)38:23<3168::AID-POLB170>3.0.CO;2-E CrossRefGoogle Scholar
  46. Royer JR, DeSimone JM, Khan SA (2001) High-pressure rheology and viscoelastic scaling predictions of polymer melts containing liquid and supercritical carbon dioxide. J Polym Sci Part B Polym Phys 39:3055–3066CrossRefGoogle Scholar
  47. Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44:2090–2100. doi:10.1002/pen.20214 CrossRefGoogle Scholar
  48. Stadler FJ, Piel C, Klimke K, et al. (2006) Influence of type and content of various comonomers on long-chain branching of ethene/R-olefin copolymers. 1474–1482.Google Scholar
  49. Stadler FJ, Nishioka A, Stange J et al (2007) Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta 46:1003–1012. doi:10.1007/s00397-007-0190-y CrossRefGoogle Scholar
  50. Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 41:1328–1333. doi:10.1021/ma702367a CrossRefGoogle Scholar
  51. Stommel M, Stojek M, Korte W (2011) FEM zur Berechnung von Kunststoff- und Elastomerbauteilen. Carl Hanser VerlagGoogle Scholar
  52. Takada M, Ohshima M (2003) Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polym Eng Sci 43:479–489. doi:10.1002/pen.10039 CrossRefGoogle Scholar
  53. Venkatraman S, Okano M (1990) A comparison of torsional and capillary rheometry for polymer melts: the Cox-Merz rule revisited. Polym Eng Sci 30:308–313. doi:10.1002/pen.760300508 CrossRefGoogle Scholar
  54. Wang J, James DF, Park CB, et al. (2008) Planar extensional viscosity of polystyrene and polystyrene CO2 solution. AIP Conference Proceedings. AIP, pp 81–83Google Scholar
  55. Wang J, James DF, Park CB (2010) Planar extensional flow resistance of a foaming plastic. J Rheol (N Y N Y) 54:95–116. doi:10.1122/1.3257724 CrossRefGoogle Scholar
  56. Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290. doi:10.1021/ma0017034 CrossRefGoogle Scholar
  57. Wood-Adams PM, Dealy JM, DeGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499. doi:10.1021/ma991533z CrossRefGoogle Scholar
  58. Xue A, Tzoganakis C (2003) Rheological properties of polystyrene/supercritical CO2 solutions from an extrusion slit die. J Polym Eng 23:1–22. doi:10.1515/POLYENG.2003.23.1.1 CrossRefGoogle Scholar
  59. Yan D, Wang WJ, Zhu S (1999) Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer (Guildf) 40:1737–1744. doi:10.1016/S0032-3861(98)00318-8 CrossRefGoogle Scholar
  60. Yu K, Román Marín JM, Rasmussen HK, Hassager O (2010) 3D modeling of dual wind-up extensional rheometers. J Non-Newt Fluid Mech 165:14–23. doi:10.1016/j.jnnfm.2009.08.006
  61. Zhang Z, Nawaby AV, Day M (2003) CO2-delayed crystallization of isotactic polypropylene: a kinetic study. J Polym Sci Part B Polym Phys 41:1518–1525. doi:10.1002/polb.10509 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Raps
    • 1
  • Thomas Köppl
    • 1
  • Lutz Heymann
    • 2
  • Volker Altstädt
    • 1
  1. 1.Department of Polymer EngineeringUniversity of BayreuthBayreuthGermany
  2. 2.Department of Applied Mechanics and Fluid DynamicsUniversity of BayreuthBayreuthGermany

Personalised recommendations