Rheologica Acta

, Volume 55, Issue 7, pp 527–536 | Cite as

Measuring average rheological quantities of cell monolayers in the linear viscoelastic regime

  • Haider Dakhil
  • Daniel F. Gilbert
  • Deepika Malhotra
  • Anja Limmer
  • Hannes Engelhardt
  • Anette Amtmann
  • Jan Hansmann
  • Holger Hübner
  • Rainer Buchholz
  • Oliver Friedrich
  • Andreas Wierschem
Original Contribution

Abstract

During the last decades, the rheology of cells has been studied almost entirely in single cells. While cell-to-cell variation is typically very large and most studies were carried out in the nonlinear viscoelastic regime, we quantify average linear viscoelastic cell properties like storage and loss moduli and normal stress in monolayers of different cell types showing that murine 3T6 fibroblasts, human fibroblasts, and HeLa cells differ considerably in their storage modulus. To this end, we modified a commercial rheometer to set up a parallel-disk configuration at gap widths of a few micrometers and optically detected the cell concentration in the gap. This enables studying the linear viscoelastic behavior of the cells and permits quantifying the impact of drugs affecting the cytoskeleton or the extracellular matrix connection. Thus, due to its high-content approach, without the need of treating the samples in the rheometer, this envisions the use of this method as a fast diagnostic tool. The method also allows for quantitatively studying of the impact of pre-stress on the storage and loss moduli of the cells.

Keywords

Cell rheology Linear viscoelasticity Narrow-gap rheometry Parallel-disk configuration Cell monolayer Biochemical treatment Pre-stress Primary cells Cell lines 

Notes

Acknowledgments

H. D. gratefully acknowledges the financial support by Deutscher Akademischer Austauschdienst (DAAD), Germany, and the Ministry of Higher Education and Scientific Research, Iraq. H. E. gratefully acknowledges the financial support by the Federal Ministry of Education and Research (BMBF), Germany, under project number 031A305E. We thank Mr. J. Heubeck and Mr. H. Weber for implementing the setup and S. Schürmann for the helpful discussions.

References

  1. Balland M, Richert A, Gallet F (2005) The dissipative contribution of myosin II in the cytoskeleton dynamics of myoblasts. Eur Biophys J 34:255–261CrossRefGoogle Scholar
  2. Berdyyeva TK, Woodworth CD, Sokolov I (2005) Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys Med Biol 50:81–92CrossRefGoogle Scholar
  3. Cai P, Mizutani Y, Tsuchiya M, Maloney JM, Fabry B, van Vliet KJ, Okajima T (2013) Quantifying cell-to-cell variation in power-low rheology. Biophys J 105:1093–1102CrossRefGoogle Scholar
  4. Caille N, Thoumine O, Tardy Y, Meister J-J (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35:177–187CrossRefGoogle Scholar
  5. Dakhil H, Wierschem A (2014) Measuring low viscosities and high shear rates with a rotational rheometer in a thin-gap parallel-disk configuration. Appl Rheo 24:63795Google Scholar
  6. Davies GA, Stokes JR (2005) On the gap error in parallel plate rheometry that arises from the presence of air when zeroing the gap. J Rheol 49:919–922CrossRefGoogle Scholar
  7. Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J. Non-Newtonian Fluid Mech 148:73–87CrossRefGoogle Scholar
  8. Elkins CM, Shen W-J, Khor VK, Kraemer FB, Fuller GG (2015) Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer. J Rheol 59:33–50CrossRefGoogle Scholar
  9. Fernández P, Heymann L, Ott A, Aksel N, Pullarkat PA (2007) Shear rheology of a cell monolayer. New J Phys 9:419CrossRefGoogle Scholar
  10. Freshney RI (1993) Culture of animal cells. A manual of basic techniques. 3rd ed. Wiley-Liss, New YorkGoogle Scholar
  11. Gey GO, Coffmann WD, Kubieck MT (1952) Tissue culture studies of the proliferative capacity for cervical carcinoma and normal epithelium. Cancer Res 12:264–265Google Scholar
  12. Gilbert DF, Meinhof T, Pepperkok R, Runz H (2009) DetecTiff: a novel image analysis routine for high-content screening microscopy. J Biomol Screen 14:944–955CrossRefGoogle Scholar
  13. Greenberg SB, Grove GL, Cristofalo VJ (1977) Cell size in aging monolayer cultures. In Vitro 13:297–300CrossRefGoogle Scholar
  14. Grinell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124:401–404CrossRefGoogle Scholar
  15. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698CrossRefGoogle Scholar
  16. Guilak F, Tedrow JR, Burgkart R (2000) Viscoplastic properties of the cell nucleus. Biochem Biophys Res Comm 269:781–786CrossRefGoogle Scholar
  17. Karimi A, Navidbakhsh M, Haghighatnama M, Motevalli Haghi A (2015) Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling. Comp Meth Biomech Biomed Engg 18:1768–1774CrossRefGoogle Scholar
  18. Kasza KE, Nakamura F, Hu S, Kollmannsberger P, Bonakdar N, Fabry B, Stossel TP, Wang N, Weitz DA (2009) Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophys J 96:4326–4335CrossRefGoogle Scholar
  19. Kollmannsberger P, Fabry B (2009) Active soft glassy rheology of adherent cells. Soft Matter 5:1771–1774CrossRefGoogle Scholar
  20. Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Annu Rev Mater Res 41:75–97CrossRefGoogle Scholar
  21. Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279:35557–35563CrossRefGoogle Scholar
  22. Lekka M, Laidler P, Gil D, Lekki J, Stachura Z, Hrynkiewicz AZ (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316CrossRefGoogle Scholar
  23. Lucey BP, Nelson-Rees WA, Hutchins GM (2009) Henrietta lacks, HeLa cells, and cell culture contamination. Arch Path Lab Med 133:1463–1467Google Scholar
  24. Masters JR (2002) HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2:315–319CrossRefGoogle Scholar
  25. Micoulet A, Spatz JA, Ott A (2005) Mechanical response analysis and power generation by single-cell stretching. Chem Phys Chem 6:663–670Google Scholar
  26. Mierke CT, Kollmannsberger P, Paranhos Zitterbart D, Smith J, Fabry B, Goldmann WH (2008) Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 94:661–670CrossRefGoogle Scholar
  27. Mitrossilis D, Fouchard J, Guiroy A, Desprat N, Rodriguez A, Fabry B, Asnacios A (2009) Single-cell response to stiffness exhibits muscle-like behavior. PNAS 106:18243–18248CrossRefGoogle Scholar
  28. Mitsui Y, Schneider EL (1976) Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech Ageing Dev 5:45–56CrossRefGoogle Scholar
  29. Niu T, Cao G (2014) Power-law rheology characterization of biological cell properties under AFM indentation measurement. RSC Adv 4:29291CrossRefGoogle Scholar
  30. Oliveira MS, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string in polymer solutions. J Non-Newtonian Fluid Mech 137:137–148CrossRefGoogle Scholar
  31. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–15624CrossRefGoogle Scholar
  32. Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8:443–450CrossRefGoogle Scholar
  33. Pipe CJ, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47:621–642CrossRefGoogle Scholar
  34. Sasaki DT, Dumas SE, Engleman EG (1987) Discrimination of viable and non-viable cells using propidium iodide in two color immunofluorescence. Cytometry 8:413–420CrossRefGoogle Scholar
  35. Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, Jaspers S, Blatt T, Wittern KP, Wenck H, Käs JA (2010) Stiffening of human skin fibroblasts with age. Biophys J 99:2434–2442CrossRefGoogle Scholar
  36. Soulages J, Oliveira MS, Sousa PC, Alves MA, McKinley GH (2009) Investigating the stability of viscoelastic stagnation flows in T-shaped microchannels. J Non-Newtonian Fluid Mech 163:9–24CrossRefGoogle Scholar
  37. Stamenović D, Rosenblatt N, Montoya-Zavala M, Matthews BD, Hu S, Suki B, Wang N, Ingber DE (2007) Rheological behavior of living cells is timescale-dependent. Bio J 93:L39–L41Google Scholar
  38. Todaro GJ, Green H (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol 17:299–313CrossRefGoogle Scholar
  39. Tuan T-L, Song A, Chang S, Youmai S, Nimni ME (1996) In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp Cell Res 223:127–134CrossRefGoogle Scholar
  40. Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ (2002) In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvascular Res 64:384–397CrossRefGoogle Scholar
  41. Verdier C, Etienne J, Duperray A, Preziosi L (2009) Review. Rheological properties of biological materials. Comp Rend Phys 10:790–811CrossRefGoogle Scholar
  42. Weissman-Shomer P, Fry M (1975) Chick embryo fibroblasts senescence in vitro: pattern of cell division and life span as a function of cell density. Mech Ageing Dev 4:159–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haider Dakhil
    • 1
    • 2
  • Daniel F. Gilbert
    • 3
    • 4
  • Deepika Malhotra
    • 1
    • 5
  • Anja Limmer
    • 1
    • 6
  • Hannes Engelhardt
    • 6
  • Anette Amtmann
    • 6
  • Jan Hansmann
    • 5
  • Holger Hübner
    • 6
  • Rainer Buchholz
    • 4
    • 6
  • Oliver Friedrich
    • 3
    • 4
  • Andreas Wierschem
    • 1
    • 4
  1. 1.Institute of Fluid MechanicsFriedrich-Alexander-Universität Erlangen-Nürnberg FAU)ErlangenGermany
  2. 2.Faculty of EngineeringUniversity of KufaNajafIraq
  3. 3.Institute of Medical BiotechnologyFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  4. 4.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  5. 5.Fraunhofer Institute for Interfacial Engineering and BiotechnologyWürzburgGermany
  6. 6.Institute of Bioprocess EngineeringFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations