Rheologica Acta

, Volume 55, Issue 4, pp 267–278 | Cite as

Shear localisation in interfacial particle layers and its influence on Lissajous-plots

  • Fabian C. BirbaumEmail author
  • Sanna Haavisto
  • Antti Koponen
  • Erich J. Windhab
  • Peter Fischer
Original Contribution


Interfacial rheological measurements often show in their nonlinear Lissajous-plots rhombus or saddle-like shapes indicating complex local deformation behaviour. A strong interacting silica particle and an almost not interacting clay particle were studied in respect to their interfacial rheological properties. Large amplitude oscillation shear measurements were performed with a bicone geometry and combined with optical measurements, from which particle tracks were calculated. A correlation was found between the appearance of shear localisation and Lissajous-plot shapes. Silica particles showed shear localisation at the bicone edge and rhombic plateaus in the Lissajous-plot, while the shear localisation for the clay particles was observed at the cup’s wall as saddle-like shaped Lissajous-plots


Nonlinear viscoelasticity Slip Interface Tracking Particle LAOS 



The Academy of Finland (project Rheology of Complex Fluids, ReCoF) is acknowledged for financial support.

Supplementary material

(MOV 9.70 MB)

(MOV 8.44 MB)


  1. Akartuna I, Tervoort E, Wong J C, Studart A R, Gauckler L J (2009) Macroporous polymers from particle-stabilized emulsions. Polymer 50:3645–3651CrossRefGoogle Scholar
  2. Arditty S, Whitby C P, Binks B P, Schmitt V, Leal-Calderon F (2003) Some general features of limited coalescence in solid-stabilized emulsions. The European Physical Journal E 11:273–281CrossRefGoogle Scholar
  3. Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F (2004) Materials based on solid-stabilized emulsions. J Colloid Interface Sci 275:659–664CrossRefGoogle Scholar
  4. Bahtz J, Gunes D Z, Hughes E, Pokorny L, Riesch F, Syrbe A, Fischer P, Windhab E J (2015) Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions. Langmuir 31:5265–5273CrossRefGoogle Scholar
  5. Benoy CJ, Elson LA, Schneider R (1972) Multiple emulsions, a suitable vehicle to provide sustained release of cancer chemotherapeutic agents. British Journal of Pharmacology 45:135P–136PGoogle Scholar
  6. Binks B P (2002) Particles as surfactants–similarities and differences. Current Opinion in Colloid & Interface Science 7:21–41CrossRefGoogle Scholar
  7. Binks B P, Horozov T S (2005) Aqueous foams stabilized solely by silica nanoparticles. Angew Chem 117:3788–3791CrossRefGoogle Scholar
  8. Bos M A, van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interf Sci 91:437–471CrossRefGoogle Scholar
  9. Brooks C F, Fuller G G, Frank C W, Robertson C R (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15:2450–2459CrossRefGoogle Scholar
  10. Cervantes Martinez A, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks B P (2008) On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4:1531–1535CrossRefGoogle Scholar
  11. Dickinson E (2007) Colloidal systems in foods containing droplets and bubbles. Woodhead Publishing Ltd, chap 6:153–184Google Scholar
  12. Dickinson E (2010) Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid & Interface Science 15:40–49CrossRefGoogle Scholar
  13. Dickinson E (2011) Mixed biopolymers at interfaces: competitive adsorption and multilayer structures. Food Hydrocoll 25:1966–1983CrossRefGoogle Scholar
  14. Dimitriou C J, Ewoldt R H, McKinley G H (2013) Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J Rheol 57:27–70CrossRefGoogle Scholar
  15. Erni P, Fischer P, Windhab E J, Kusnezov V, Stettin H, Läuger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74:4916–4924CrossRefGoogle Scholar
  16. Ewoldt R, Winter P, Maxey J, McKinley G (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212CrossRefGoogle Scholar
  17. Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J (2006) Stabilization of foams with inorganic colloidal particles. Langmuir 22:10 988:983–10Google Scholar
  18. Hyun K, Nam J G, Wilhelm M, Ahn K H, Lee S J (2003) Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow. Korea-Australia Rheology Journal 15:97–105Google Scholar
  19. Hyun K, Wilhelm M, Klein C O, Cho K S, Nam J G, Ahn K H, Lee S J, Ewoldt R H, McKinley G H (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753CrossRefGoogle Scholar
  20. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702CrossRefGoogle Scholar
  21. Jeon T Y, Hong J S (2014) Stabilization of O/W emulsion with hydrophilic/hydrophobic clay particles. Colloid Polym Sci 292:2939–2947CrossRefGoogle Scholar
  22. Kim J, Merger D, Wilhelm M, Helgeson M E (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58:1359– 1390CrossRefGoogle Scholar
  23. Kim J K, Rühs P A, Fischer P, Hong J S (2013) Interfacial localization of nanoclay particles in oil-in-water emulsions and its reflection in interfacial moduli. Rheol Acta 52:327–335CrossRefGoogle Scholar
  24. Klein C O, Spiess H W, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259CrossRefGoogle Scholar
  25. Lee S H, Yong Song H, Hyun K, Hyup Lee J (2015) Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow. J Rheol 59:1–19CrossRefGoogle Scholar
  26. Marti-Mestres G, Nielloud F (2002) Emulsions in health care applications—an overview. J Dispers Sci Technol 23:419–439CrossRefGoogle Scholar
  27. McClements D J (2015) Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interf Sci 219:27–53CrossRefGoogle Scholar
  28. Merger D, Wilhelm M (2014) Intrinsic nonlinearity from LAOStrain-experiments on various strain- and stress-controlled rheometers: a quantitative comparison. Rheol Acta 53:621–634CrossRefGoogle Scholar
  29. Mermet-Guyennet M R B, Gianfelice de Castro J, Habibi M, Martzel N, Denn M M, Bonn D (2015) LAOS: the Strain softening/strain hardening paradox. J Rheol 59:21–32CrossRefGoogle Scholar
  30. Nam J, Ahn K, Lee S, Hyun K (2011) Strain stiffening of non-colloidal hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region. Rheol Acta 50:925– 936CrossRefGoogle Scholar
  31. Pawlik A, Cox P W, Norton I T (2010) Food grade duplex emulsions designed and stabilised with different osmotic pressures. J Colloid Interface Sci 352:59–67CrossRefGoogle Scholar
  32. Pickering S U (1907) CXCVI.-Emulsions. Journal of the Chemical Society. Transactions 91:2001–2021Google Scholar
  33. Ramsden W (1903) Separation of solids in the surface-layers of solutions and ’suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – preliminary account. Proc R Soc Lond 72:156– 164CrossRefGoogle Scholar
  34. Ranjan G, Rao ASR (2000) Basic and Applied Soil Mechanics, 2nd edn. New Age InternationalGoogle Scholar
  35. Rogers S A, Lettinga M P (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56:1–25CrossRefGoogle Scholar
  36. Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011a) Oscillatory yielding of a colloidal star glass. Journal of Rheology 55:733– 752Google Scholar
  37. Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011b) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. Journal of Rheology 55:435–458Google Scholar
  38. Roussel N, Roy R L, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. Journal of Non-Newtonian Fluid Mechanics 117:85–95CrossRefGoogle Scholar
  39. Rühs P A, Affolter C, Windhab E J, Fischer P (2013) Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of β-lactoglobulin fibrils and their derivatives. J Rheol 57:1003–1022CrossRefGoogle Scholar
  40. Safouane M, Langevin D, Binks B P (2007) Effect of particle hydrophobicity on the properties of silica particle layers at the air-water interface. Langmuir 23:11 553:546–11Google Scholar
  41. Sagis L M C, Fischer P (2014) Nonlinear rheology of complex fluid-fluid interfaces. Current Opinion in Colloid & Interface Science 19:520–529CrossRefGoogle Scholar
  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J Y, White D J, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRefGoogle Scholar
  43. Singh H (2011) Aspects of milk-protein-stabilised emulsions. Food Hydrocoll 25:1938–1944CrossRefGoogle Scholar
  44. Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydrate Polymers 106:283–292CrossRefGoogle Scholar
  45. Tcholakova S, Denkov N D, Lips A (2008) Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10:1608–1627CrossRefGoogle Scholar
  46. van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195–1209CrossRefGoogle Scholar
  47. Vandebril S, Franck A, Fuller G, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49:131–144CrossRefGoogle Scholar
  48. Windbergs M, Zhao Y, Heyman J, Weitz D A (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fabian C. Birbaum
    • 1
    Email author
  • Sanna Haavisto
    • 2
  • Antti Koponen
    • 2
  • Erich J. Windhab
    • 1
  • Peter Fischer
    • 1
  1. 1.Institute of Food, Nutrition and HealthZürichSwitzerland
  2. 2.VTT Technical Research Centre of FinlandJyväskyläFinland

Personalised recommendations