Advertisement

Rheologica Acta

, Volume 55, Issue 2, pp 163–176 | Cite as

Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels

  • Amin GhavamiNejad
  • Saud Hashmi
  • Mohammad Vatankhah-Varnoosfaderani
  • Florian J. StadlerEmail author
Original Contribution

Abstract

A catechol-containing organogel based on random copolymers of N-isopropylacrylamide (NIPAM) and dopamine methacrylate (NIDO5%) in dimethyl formamide (DMF) was supramolecularly crosslinked by NaBH4 in the presence of reduced graphene oxide (RGO). The focus of the investigations was on the influence of H2O and RGO in the system, which leads to a softening and stiffening, respectively. Whereas RGO tends to restack partially, this tendency was not found in the gels, suggesting a surface coverage of RGO with NIDO5% due to H-bonding and surface crosslinking attributed to the interactions of polar groups of polymer chains with carboxylic and carbonyl groups of RGO sheets proven by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction and spectroscopy (XRD). While RGO leads to the system becoming more brittle, its presence does not lead to an excessive loss of the self-healing characteristics, but it clearly stabilizes the gel when swollen with H2O, as can be seen from the significantly higher modulus and the retained self-healing behavior.

Keywords

Self-healing Organogel Swelling Supramolecular bonding Reduced graphene oxide 

Notes

Acknowledgments

The authors acknowledge financial aid from the National Research Foundation of Korea (110100713, 2015–020449), the National Science Foundation of China (21574086), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), and Shenzhen City High Level Talent Program and Shenzhen Sci & Tech research grant (ZDSYS201507141105130, JCYJ20140509172719311). The authors would also like to thank the staff of the CBNU central lab.

Supplementary material

397_2015_906_MOESM1_ESM.docx (219 kb)
ESM 1 (DOCX 219 kb)
ESM 2

(AVI 21078 kb)

ESM 3

(AVI 25045 kb)

References

  1. Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42(21):8370–8384CrossRefGoogle Scholar
  2. Bai H, Li C, Wang X, Shi G (2011) On the gelation of graphene oxide. J Phys Chem C 115(13):5545–5551CrossRefGoogle Scholar
  3. Brassinne J, Stevens AM, Van Ruymbeke E, Gohy J-F, Fustin C-A (2013) Hydrogels with dual relaxation and two-step gel–sol transition from heterotelechelic polymers. Macromolecules 46(22):9134–9143CrossRefGoogle Scholar
  4. Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31(3):420–7CrossRefGoogle Scholar
  5. Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44(8):2455–2462CrossRefGoogle Scholar
  6. Castelletto V, Hamley IW, Ma Y, Bories-Azeau X, Armes SP, Lewis AL (2004) Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer. Langmuir 20(10):4306–9CrossRefGoogle Scholar
  7. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32(8–9):1083–1122CrossRefGoogle Scholar
  8. Cheng C, Li S, Zhao J, Li X, Liu Z, Ma L, Zhang X, Sun S, Zhao C (2013a) Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem Eng J 228:468–481CrossRefGoogle Scholar
  9. Cheng C, Nie SQ, Li S, Peng H, Yang H, Ma L, Sun SD, Zhao CS (2013b) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1(3):265–275CrossRefGoogle Scholar
  10. Choong GYH, Focatiis DSA, Hassell DG (2013) Viscoelastic melt rheology and time–temperature superposition of polycarbonate–multi-walled carbon nanotube nanocomposites. Rheol Acta 52(8–9):801–814CrossRefGoogle Scholar
  11. Chunder A, Liu J, Zhai L (2010) Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol Rapid Commun 31(4):380–4CrossRefGoogle Scholar
  12. Clément F, Johner A, Joanny JF, Semenov AN (2000) Stress relaxation in telechelic gels. 1. Sticker extraction. Macromolecules 33(16):6148–6158CrossRefGoogle Scholar
  13. Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362CrossRefGoogle Scholar
  14. Dang TT, Pham VH, Hur SH, Kim EJ, Kong BS, Chung JS (2012) Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide. J Colloid Interface Sci 376(1):91–96CrossRefGoogle Scholar
  15. Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed Engl 50(8):1905–9CrossRefGoogle Scholar
  16. Dong S, Zheng B, Xu D, Yan X, Zhang M, Huang F (2012) A crown ether appended super gelator with multiple stimulus responsiveness. Adv Mater 24(24):3191–5CrossRefGoogle Scholar
  17. D'souza F, Kadish KM (2012) Handbook of carbon nano materials, World ScientificGoogle Scholar
  18. Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38(1):236–270CrossRefGoogle Scholar
  19. Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134(11):5362–8CrossRefGoogle Scholar
  20. Friedrich T, Tieke B, Stadler FJ, Bailly C, Eckert T, Richtering W (2010) Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: swelling behavior, transparency and rheological properties. Macromolecules 43(23):9964–9971CrossRefGoogle Scholar
  21. Friedrich T, Tieke B, Stadler FJ, Bailly C (2011a) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7(14):6590–6597CrossRefGoogle Scholar
  22. Friedrich T, Tieke B, Stadler FJ, Bailly C (2011b) Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-induced switching of transparency and volume and improved mechanical stability. Langmuir 27(6):2997–3005CrossRefGoogle Scholar
  23. Ghavaminejad A, Hashmi S, Joh HI, Lee S, Vatankhah Varnoosfaderani M, Lee YS, Stadler FJ (2014) Network formation in graphene oxide composites with surface grafted poly-N-isopropyl amide chains in aqueous solution characterized by rheological experiments. Phys Chem Chem Phys 16:8675–8685CrossRefGoogle Scholar
  24. Guillet P, Mugemana C, Stadler FJ, Schubert US, Fustin C-A, Bailly C, Gohy J-F (2009) Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials. Soft Matter 5(18):3409CrossRefGoogle Scholar
  25. Hamley IW, Cheng G, Castelletto V (2011) A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. Macromol Biosci 11(8):1068–78CrossRefGoogle Scholar
  26. Hashmi S, Ghavaminejad A, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2012) Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and CNT. Macromolecules 45(24):9804–9815CrossRefGoogle Scholar
  27. He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun (Camb) 47(26):7497–9CrossRefGoogle Scholar
  28. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1. Carbon 42(14):2929–2937Google Scholar
  29. Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 401:97–106CrossRefGoogle Scholar
  30. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluid. J Non-Newtonian Fluid Mech 107:51–65CrossRefGoogle Scholar
  31. Jeon EK, Seo E, Lee E, Lee W, Um MK, Kim BS (2013) Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem Commun (Camb) 49(33):3392–4CrossRefGoogle Scholar
  32. Kang SM, Park S, Kim D, Park SY, Ruoff RS, Lee H (2011) Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater 21(1):108–112CrossRefGoogle Scholar
  33. Khalatur PG, Khokhlov AR (1996) Computer simulation of solutions of telechelic polymers with associating end-groups. Macromol Theory Simul 5(5):877–899CrossRefGoogle Scholar
  34. Koike A, Nemoto N, Inoue T, Osaki K (1995) Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 1. Concentration effect. Macromolecules 28(7):2339–2344CrossRefGoogle Scholar
  35. Ku SH, Lee M, Park CB (2013) Carbon-based nanomaterials for tissue engineering. Adv Healthc Mater 2(2):244–260CrossRefGoogle Scholar
  36. Kujawa P, Watanabe H, Tanaka F, Winnik FM (2005) Amphiphilic telechelic poly(N-isopropylacrylamide) in water: from micelles to gels. Eur Phys J E Soft Matter 17(2):129–37CrossRefGoogle Scholar
  37. Kumar R, Raghavan SR (2010) Thermothickening in solutions of telechelic associating polymers and cyclodextrins. Langmuir 26(1):56–62CrossRefGoogle Scholar
  38. Kundu A, Layek RK, Kuila A, Nandi AK (2012) Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl Mater Interfaces 4(10):5576–5582CrossRefGoogle Scholar
  39. Kurth DG (2008) Metallo-supramolecular modules as a paradigm for materials science. Sci Technol Adv Mater 9(1):014103CrossRefGoogle Scholar
  40. Lee JH, Gustin JP, Chen T, Payne GF, Raghavan SR (2005) Vesicle--biopolymer gels: networks of surfactant vesicles connected by associating biopolymers. Langmuir 21(1):26–33CrossRefGoogle Scholar
  41. Lee DY, Yoon S, Oh YJ, Park SY, In I (2011) Thermo-responsive assembly of chemically reduced graphene and poly(N-isopropylacrylamide). Macromol Chem Phys 212(4):336–341CrossRefGoogle Scholar
  42. Lehn J-M (1995) Supramolecular chemistry—concepts and perspectives. VCH, WeinheimGoogle Scholar
  43. Lehn JM, Mascal M, Decian A, Fischer J (1992) Molecular ribbons from molecular recognition directed self-assembly of self-complementary molecular-components. J Chem Soc-Perkin Trans 2(4):461–467CrossRefGoogle Scholar
  44. Liao D, Dai S, Tam KC (2007) Rheological properties of a telechelic associative polymer in the presence of alpha- and methylated beta-cyclodextrins. J Phys Chem B 111(2):371–8CrossRefGoogle Scholar
  45. Lu CH, Zahedi P, Forman A, Allen C (2014) Multi-arm PEG/silica hydrogel for sustained ocular drug delivery. J Pharm Sci 103(1):216–226CrossRefGoogle Scholar
  46. Mandal S, Lee MV, Hill JP, Vinu A, Ariga K (2010) Recent developments in supramolecular approach for nanocomposites. J Nanosci Nanotechnol 10(1):21–33CrossRefGoogle Scholar
  47. Menyo MS, Hawker CJ, Waite JH (2013) Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9(43):10314–10323CrossRefGoogle Scholar
  48. Miller SG, Bauer JL, Maryanski MJ, Heimann PJ, Barlow JP, Gosau J-M, Allred RE (2010) Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos Sci Technol 70(7):1120–1125CrossRefGoogle Scholar
  49. Mingos DMP (2004) Supramolecular assembly via hydrogen bonds. Springer, BerlinGoogle Scholar
  50. Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRefGoogle Scholar
  51. Olsen BD, Johnson JA (2013) Reply to stadler: combining network disassembly spectrometry with rheology/spectroscopy. PNAS 110(22):E1973CrossRefGoogle Scholar
  52. Ott C, Ulbricht C, Hoogenboom R, Schubert US (2012) Metallo-supramolecular materials based on amine-grafting onto polypentafluorostyrene. Macromol Rapid Commun 33(6–7):556–61CrossRefGoogle Scholar
  53. Palser AHR (1999) Interlayer interactions in graphite and carbon nanotubes. Phys Chem Chem Phys 1(18):4459–4464CrossRefGoogle Scholar
  54. Park JK, Kim KS, Yeom J, Jung HS, Hahn SK (2012) Facile surface modification and application of temperature responsive poly(N-isopropylacrylamide-co-dopamine methacrylamide). Macromol Chem Phys 213(20):2130–2135CrossRefGoogle Scholar
  55. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Rapid self-healing hydrogels. Proc Natl Acad Sci U S A 109(12):4383–4388CrossRefGoogle Scholar
  56. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207(19):1773–1780CrossRefGoogle Scholar
  57. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34(10):821–36CrossRefGoogle Scholar
  58. Schmidt M, Münstedt H (2002a) On the elastic properties of model suspensions as investigated by creep recovery measurement in shear. Rheol Acta 41(3):205–210CrossRefGoogle Scholar
  59. Schmidt M, Münstedt H (2002b) Reological behaviour of concentrated monodisperse suspensions as a function of preshear conditions and temperature: an experimental study. Rheol Acta 41(3):193–204CrossRefGoogle Scholar
  60. Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A: Appl Sci Manuf 43(9):1476–1481CrossRefGoogle Scholar
  61. Sijbesma RP, Kentgens APM, Lutz ETG, Van Der Maas JH, Nolte RJM (1993) Binding features of molecular clips derived from diphenylglycoluril. J Am Chem Soc 115(20):8999–9005CrossRefGoogle Scholar
  62. Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newtonian Fluid Mech 112(2–3):237–250CrossRefGoogle Scholar
  63. South AB, Lyon LA (2010) Autonomic self-healing of hydrogel thin films. Angew Chem Int Ed Engl 49(4):767–71CrossRefGoogle Scholar
  64. Stadler FJ (2013) Quantifying primary loops in polymer gels by linear viscoelasticity. Proc Natl Acad Sci U S A 110(22):E1972CrossRefGoogle Scholar
  65. Stadler FJ, Friedrich T, Kraus K, Tieke B, Bailly C (2013) Elongational rheology of NIPAM-based hydrogels. Rheol Acta 52(5):413–423CrossRefGoogle Scholar
  66. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–6CrossRefGoogle Scholar
  67. Sun S, Wu P (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21(12):4095CrossRefGoogle Scholar
  68. Suzuki S, Uneyama T, Inoue T, Watanabe H (2012) Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution. Macromolecules 45(2):888–898CrossRefGoogle Scholar
  69. Tanaka F (2000) Thermoreversible gelation strongly coupled to polymer conformational transition. Macromolecules 33(11):4249–4263CrossRefGoogle Scholar
  70. Tanaka F, Koga T, Kaneda I, Winnik FM (2011) Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers. J Phys Condens Matter 23(28):284105CrossRefGoogle Scholar
  71. Tripathi A, Tam KC, Mckinley GH (2006) Rheology and dynamics of associative polymers in shear and extension: theory and experiments. Macromolecules 39(5):1981–1999CrossRefGoogle Scholar
  72. Tsitsilianis C, Iliopoulos I, Ducouret G (2000) An associative polyelectrolyte End-capped with short polystyrene chains. Synthesis and rheological behavior. Macromolecules 33(8):2936–2943CrossRefGoogle Scholar
  73. Tung VC, Kim J, Cote LJ, Huang J (2011) Sticky interconnect for solution-processed tandem solar cells. J Am Chem Soc 133(24):9262–5CrossRefGoogle Scholar
  74. Vatankhah-Varnoosfaderani M, Ghavaminejad A, Hashmi S, Stadler FJ (2013) Mussel-inspired pH-triggered reversible foamed multi-responsive gel—the surprising effect of water. Chem Commun (Camb) 49(41):4685–7CrossRefGoogle Scholar
  75. Vatankhah-Varnoosfaderani M, Hashmi S, Ghavaminejad A, Stadler FJ (2014b) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron–catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5(2):512–523CrossRefGoogle Scholar
  76. Watanabe H, Sato T, Osaki K, Aoki Y, Li L, Kakiuchi M, Yao ML (1998) Rheological images of poly(vinyl chloride) gels. 4. Nonlinear behavior in a critical gel state. Macromolecules 31(13):4198–4204CrossRefGoogle Scholar
  77. Whiteside NJ, Wallace GG, In Het Panhuis M (2013) Preparation and characterisation of graphene composite hydrogels. Synth Met 168:36–42CrossRefGoogle Scholar
  78. Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F (2012) A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24(3):362–9CrossRefGoogle Scholar
  79. Zerkowski JA, Seto CT, Whitesides GM (1992) Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J Am Chem Soc 114(13):5473–5475CrossRefGoogle Scholar
  80. Zhang N, Li R, Zhang L, Chen H, Wang W, Liu Y, Wu T, Wang X, Wang W, Li Y, Zhao Y, Gao J (2011) Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter 7(16):7231CrossRefGoogle Scholar
  81. Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F (2012) Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed Engl 51(28):7011–5CrossRefGoogle Scholar
  82. Zhou H, Woo J, Cok AM, Wang M, Olsen BD, Johnson JA (2012) Counting primary loops in polymer gels. PNAS 109(47):19119–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety EvaluationShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.School of Semiconductor and Chemical EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Department of Bionanosystem Engineering, Graduate SchoolChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Chemical EngineeringNED University of Engineering and TechnologyKarachiPakistan
  5. 5.Department of ChemistryUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations