Rheologica Acta

, Volume 55, Issue 1, pp 23–36 | Cite as

Rheology of colloidal particles in lyotropic hexagonal liquid crystals: the role of particle loading, shape, and phase transition kinetics

  • Siddharth Kulkarni
  • Prachi TharejaEmail author
Original Contribution


The rheology of self-assembled elongated iron oxyhydroxide (FeOOH) and spherical silica (SiO2) particles in hexagonal (H1) liquid crystal (LC) phase of water and non-ionic surfactant C12E9 is investigated by varying particle concentration and cooling rate. The rheology data shows that both SiO2/H1 and FeOOH/ H1 LC composites exhibit a higher G when compared to the particle-free H1 phase, with increasing particle loading and cooling rate. FeOOH particles improve G of the H1 phase more significantly than SiO2 particles due to the formation of an interconnected network at H1 domain boundaries at cooling rates of 1 and 2 C/min. We hypothesize that self-assembly of particles at domain boundaries leads to a decreased mobility of defects causing an increase in elasticity of particle-laden H1 phase. Dynamic strain sweep and creep experiments show a non-linear stress–strain relationship attributed to the alignment of micellar cylindrical rods under shear.


Hexagonal phase Liquid crystals Rheology Colloidal particles 



The authors thank Prof. S. S. Velankar (U. Pitt) and Prof Norman J. Wagner (U Del) for fruitful discussion and comments. Prachi Thareja gratefully acknowledges the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for funding this work.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

397_2015_896_MOESM1_ESM.pdf (850 kb)
(PDF 849 KB)


  1. Adhikari R (2002) Interactions and correlations of particulate inclusions in a columnar phase. Eur Phys J E 9:127–134. doi: 10.1140/epje/i2002-10065-5 CrossRefGoogle Scholar
  2. Ahir SV, Petrov PG, Terentjev EM (2002) Rheology at the phase transition boundary: 2. Hexagonal phase of Triton X100 surfactant solution. Langmuir 18:9140–9148. doi: 10.1021/la025793c CrossRefGoogle Scholar
  3. Alam M, Aramaki K (2008) Hexagonal phase based gel-emulsion (O/ H1 gel-emulsion): formation and rheology. Langmuir 24:12253–12259. doi: 10.1021/la8021547 CrossRefGoogle Scholar
  4. Allain M (1986) Possible defect-mediated phase transition in a lyotropic liquid crystal electron microscopy observations. EPL (Europhys Lett) 2:597–602. doi: 10.1209/0295-5075/2/8/005 CrossRefGoogle Scholar
  5. Allain M, Oswald P, Di Meglio JM (1988) Structural defects and phase transition in a lyotropic system: optical birefringence and order parameter measurements. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 162:161–169. doi: 10.1080/00268948808084457 CrossRefGoogle Scholar
  6. Basappa G, Suneel Kumaran V, Nott PR, Ramaswamy S, Naik VM, Rout D (1999) Structure and rheology of the defect-gel states of pure and particle-dispersed lyotropic lamellar phases. Eur Phys J B 12:269–276. doi: 10.1007/s100510051004 CrossRefGoogle Scholar
  7. Béneut K, Constantin D, Davidson P, Dessombz A, Chanéac C (2008) Magnetic nanorods confined in a lamellar lyotropic phase. Langmuir 24:8205–8209. doi: 10.1021/la800387a CrossRefGoogle Scholar
  8. Berejnov V, Cabuil V, Perzynski R, Raikher Y (1998a) Lyotropic system potassium laurate/1-decanol/water as a carrier medium for a ferronematic liquid crystal: phase diagram study. J Phys Chem B 102:7132–7138. doi: 10.1021/jp981904y
  9. Berejnov V, Raikher Y, Cabuil V, Bacri JC, Perzynski R (1998b) Synthesis of stable lyotropic ferronematics with high magnetic content. J Colloid Interface Sci 199:215–217. doi: 10.1006/jcis.1997.5261
  10. Bisoyi HK, Kumar S (2011) Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem Soc Rev 40:306–319. doi: 10.1039/B901793N CrossRefGoogle Scholar
  11. Bohlin L (1980) A theory of flow as a cooperative phenomenon. J Colloid Interface Sci 74:423–434. doi: 10.1016/0021-9797(80)90211-8 CrossRefGoogle Scholar
  12. Bohlin L, Ljusberg-Wahren H, Miezis Y (1985) Oscillatory shear flow measurements on liquid crystalline phases with hexagonal and cubic structures. J Colloid Interface Sci 103:294–295. doi: 10.1016/0021-9797(85)90103-1 CrossRefGoogle Scholar
  13. Bouchama F, Thathagar MB, Rothenberg G, Turkenburg DH, Eiser E (2004) Self-assembly of a hexagonal phase of wormlike micelles containing metal nanoclusters. Langmuir 20:477–483. doi: 10.1021/la035148l CrossRefGoogle Scholar
  14. Bouligand Y (1980) Defects and textures of hexagonal discotics. J Phys France 41:1307–1315. doi: 10.1051/jphys:019800041011013070 CrossRefGoogle Scholar
  15. Brochard F, De Gennes PG (1970) Theory of magnetic suspensions in liquid crystals. J Phys 31:691–708. doi: 10.1051/jphys:01970003107069100 CrossRefGoogle Scholar
  16. Buluy O et al (2011) Magnetic sensitivity of a dispersion of aggregated ferromagnetic carbon nanotubes in liquid crystals. Soft Matter 7:644–649. doi: 10.1039/C0SM00131G CrossRefGoogle Scholar
  17. Coppola L, Gianferri R, Nicotera I, Oliviero C, Nicotera I (2003) Solution and liquid crystalline microstructures in sodium taurodeoxycholate/ D2O mixtures. Langmuir 19:1990–1999. doi: 10.1021/la0205607 CrossRefGoogle Scholar
  18. Coppola L, Gianferri R, Nicotera I, Oliviero C, Antonio Ranieri G (2004) Structural changes in CTAB/ H2O mixtures using a rheological approach. Phys Chem Chem Phys 6:2364–2372. doi: 10.1039/B316621J CrossRefGoogle Scholar
  19. Derbel N et al (2001) Elasticity of hexagonal liquid crystals. Polym Int 50:778–783. doi: 10.1002/pi.688 CrossRefGoogle Scholar
  20. Douliez J-P (2010) Magnetic self-orientation of lyotropic hexagonal phases based on long chain alkanoic (fatty) acids. Langmuir 26:11397–11400. doi: 10.1021/la100885e CrossRefGoogle Scholar
  21. Evans JS, Beier CN, Smalyukh II (2011) Alignment of high-aspect ratio colloidal gold nanoplatelets in nematic liquid crystals. J Appl Phys 110:033535. doi: 10.1063/1.3620550 CrossRefGoogle Scholar
  22. Gabriele D, Cindio B, D’Antona P (2001) A weak gel model for foods. Rheol Acta 40:120–127. doi: 10.1007/s003970000139 CrossRefGoogle Scholar
  23. Hegmann T, Qi H, Marx V (2007) Nanoparticles in liquid crystals: synthesis, self-assembly, defect formation and potential applications. J Inorg Organomet Polym Mater 17:483–508. doi: 10.1007/s10904-007-9140-5 CrossRefGoogle Scholar
  24. Kumar PS, Pal SK, Kumar S, Lakshminarayanan V (2007) Dispersion of thiol stabilized gold nanoparticles in lyotropic liquid crystalline systems. Langmuir 23:3445–3449. doi: 10.1021/la063318z CrossRefGoogle Scholar
  25. Liu Q, Cui Y, Gardner D, Li X, He S, Smalyukh II (2010) Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett 10:1347–1353. doi: 10.1021/nl9042104 CrossRefGoogle Scholar
  26. Liu Q, Senyuk B, Tang J, Lee T, Qian J, He S, Smalyukh II (2012) Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter. Phys Rev Lett 109:088301. doi: 10.1103/PhysRevLett.109.088301 CrossRefGoogle Scholar
  27. Lukaschek M, Grabowski DA, Schmidt C (1995) Shear-induced alignment of a hexagonal lyotropic liquid crystal as studied by Rheo-NMR. Langmuir 11:3590–3594. doi: 10.1021/la00009a050 CrossRefGoogle Scholar
  28. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge, UKGoogle Scholar
  29. Müller S, Fischer P, Schmidt C (1997) Solid-like director reorientation in sheared hexagonal lyotropic liquid crystals as studied by nuclear maginetic resonance. J Phys II France 7:421–432. doi: 10.1051/jp2:1997135 CrossRefGoogle Scholar
  30. Oswald P, Allain M (1988) Rheology and structural defects in a lyotropic lamellar phase. J Colloid Interface Sci 126:45–53. 10.1016/0021-9797(88)90097-5CrossRefGoogle Scholar
  31. Popa-Nita V, Kralj S (2010) Liquid crystal-carbon nanotubes mixtures. J Chem Phys 132:024902. doi: 10.1063/1.3291078 CrossRefGoogle Scholar
  32. Pratibha R, Park K, Smalyukh II, Park W (2009) Tunable optical metamaterial based on liquid crystal-gold nanosphere composite. Opt Express 17:19459–19469. doi: 10.1364/OE.17.019459 CrossRefGoogle Scholar
  33. Prost J (1990) Point defects and lock-in faults in columnar phases. Liq Cryst 8:123–130. doi: 10.1080/02678299008047335 CrossRefGoogle Scholar
  34. Quilliet C, Ponsinet V, Cabuil V (1994) Magnetically doped hexagonal lyotropic phases. J Phys Chem 98:3566–3569. doi: 10.1021/j100065a004 CrossRefGoogle Scholar
  35. Ramos L, Molino F (2004) Shear melting of a hexagonal columnar crystal by proliferation of dislocations. Phys Rev Lett 92:018301. doi: 10.1103/PhysRevLett.92.018301 CrossRefGoogle Scholar
  36. Ramos L, Molino F, Porte G (2000) Shear melting in lyotropic hexagonal phases. Langmuir 16:5846–5848. doi: 10.1021/la000276k CrossRefGoogle Scholar
  37. Ramos L, Zapotocky M, Lubensky TC, Weitz DA (2002) Rheology of defect networks in cholesteric liquid crystals. Phys Rev E 66:031711. doi: 10.1103/PhysRevE.66.031711 CrossRefGoogle Scholar
  38. Richtering W, Laeuger J, Linemann R (1994) Shear orientation of a micellar hexagonal liquid crystalline phase: a rheo and small angle light scattering study. Langmuir 10:4374–4379. doi: 10.1021/la00023a073 CrossRefGoogle Scholar
  39. Rodriguez C, Acharya D, Aramaki K, Kunieda H (2005) Structure and rheology of direct and reverse liquid-crystal phases in a block copolymer/water/oil system. Colloids Surf A 269:59–66. doi: 10.1016/j.colsurfa.2005.06.061 CrossRefGoogle Scholar
  40. Salamat G, Kaler EW (1999) Colloidal dispersions in lyotropic lamellar phases. Langmuir 15:5414–5421. doi: 10.1021/la980928t CrossRefGoogle Scholar
  41. Schmidt G, Müller S, Lindner P, Schmidt C, Richtering W (1998) Shear orientation of lyotropic hexagonal phases. J Phys Chem B 102:507–513. doi: 10.1021/jp9725745 CrossRefGoogle Scholar
  42. Sens P, Turner MS, Pincus P (1997) Particulate inclusions in a lamellar phase. Phys Rev E 55:4394–4405. doi: 10.1103/PhysRevE.55.4394 CrossRefGoogle Scholar
  43. Senyuk B et al (2012) Shape-dependent oriented trapping and scaffolding of plasmonic nanoparticles by topological defects for self-assembly of colloidal dimers in liquid crystals. Nano Lett 12:955–963. doi: 10.1021/nl204030t CrossRefGoogle Scholar
  44. Sharma KP, Ganai AK, Gupta SS, Kumaraswamy G (2011) Self-standing three-dimensional networks of nanoparticles with controllable morphology by dynamic templating of surfactant hexagonal domains. Chem Mater 23:1448–1455. doi: 10.1021/cm102945x CrossRefGoogle Scholar
  45. Sharma KP, Ganai AK, Sen D, Prasad BL, Kumaraswamy G (2013) Exclusion from hexagonal mesophase surfactant domains drives end-to-end enchainment of rod-like particles. J Phys Chem B 117:12661–12668. doi: 10.1021/jp407403a CrossRefGoogle Scholar
  46. Sharma KP, Kumaraswamy G, Ly I, Mondain-Monval O (2009) Self-assembly of silica particles in a nonionic surfactant hexagonal mesophase. J Phys Chem B 113:3423–3430. doi: 10.1021/jp810769g CrossRefGoogle Scholar
  47. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  48. Vallooran JJ, Bolisetty S, Mezzenga R (2011) Macroscopic alignment of lyotropic liquid crystals using magnetic nanoparticles. Adv Mater 23:3932–3937. doi: 10.1002/adma.201101760 CrossRefGoogle Scholar
  49. Venugopal E, Aswal VK, Kumaraswamy G (2013) Nanoparticle size controls aggregation in lamellar nonionic surfactant mesophase. Langmuir 29:9643–9650. doi: 10.1021/la4021977 CrossRefGoogle Scholar
  50. Yoshida H et al (2009) Nanoparticle-stabilized cholesteric blue phases. Appl Phys Express 2:121501. doi: 10.1143/APEX.2.121501 CrossRefGoogle Scholar
  51. Zapotocky M, Ramos L, Poulin P, Lubensky TC, Weitz DA (1999) Particle-stabilized defect gel in cholesteric liquid crystals. Science 283:209–212. doi: 10.1126/science.283.5399.209 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyGandhinagarIndia

Personalised recommendations