Rheologica Acta

, Volume 54, Issue 6, pp 517–528 | Cite as

Rheological behaviour of tailored polysilazane melts for the processing of SiCN ceramics: viscoelastic properties and thermal stability

  • Octavio FloresEmail author
  • Lutz Heymann
  • Günter Motz
Original Contribution


The linear viscoelastic properties of three polysilazanes with different reactive functional groups, such as Si-H, N-H and Si-vinyl groups, were investigated. The evolution of the moduli as a function of temperature was compared to data from thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Special emphasis was given to their thermal stability. The investigated polysilazanes are amorphous polymers with low molecular weight. The storage \( G^{\prime}\left(\omega \right) \) and loss modulus \( G^{{\prime\prime}}\left(\omega \right) \) were measured from 75 to 150 °C (dependent on the particular material), and the time-temperature superposition, following the Williams-Landel-Ferry (WLF) equation, was successfully applied. One cross-linked oligosilazane, ML33S, and the solid polysilazane called ABSE, gave typical results for amorphous low molecular weight polymers. The more reactive cross-linked oligosilazane, HTTS, showed deviating behaviour.


Polysilazane Linear viscoelasticity Thermal stability Time-temperature superposition principle Glass transition temperature SiCN ceramics 



The authors gratefully acknowledge the financial support received from Deutsche Forschungsgemeinschaft (DFG) for supporting this work within the project SiMet. We also thank Marietta Böhm from Institute of Macromolecular Chemistry II, University of Bayreuth, for the GPC measurements and Ute Kuhn from the Polymer Engineering Institute, University of Bayreuth, for the DSC measurements. Furthermore, the authors thank the reviewer for the useful hints to improve the manuscript.


  1. Bill J, Aldinger F (1995) Precursor-derived covalent ceramics. Adv Mater 7:775–787CrossRefGoogle Scholar
  2. Bouquey M, Brochon C, Bruzaud S, Mingotaud AF, Schappacher M, Soum A (1996) Ring-opening polymerization of nitrogen-containing cyclic organosilicon monomers. J Organomet Chem 521:21–27CrossRefGoogle Scholar
  3. Chavez R, Ionescu E, Balan C, Fasel C, Riedel R (2011) Effect of ambient atmosphere on crosslinking of polysilazanes. J Appl Polym Sci 119:794–802CrossRefGoogle Scholar
  4. Choong Kwet Yive NS, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1992) Silicon carbonitride from polymeric precursors: thermal cross-linking and pyrolysis of oligosilazane model compounds. Chem Mater 4:141–146CrossRefGoogle Scholar
  5. Colombo P, Mera G, Riedel R, Sorarù GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837Google Scholar
  6. Duguet E, Schappacher M, Soum A (1992) High molar mass polysilazane: a new polymer. Macromolecules 25:4835–4839CrossRefGoogle Scholar
  7. Duperrier S, Calin A, Bernard S, Balan C, Miele P (2007a) Rheological behaviour of poly[(B‐alkylamino)borazine] in a fibre spinning process. Soft Mater 4:123–142CrossRefGoogle Scholar
  8. Duperrier S, Gervais C, Bernard S, Cornu D, Babonneau F, Balan C, Miele P (2007b) Design of a series of preceramic B-Tri(methylamino)borazine-based polymers as fibre precursors: architecture, thermal behaviour, and melt-spinnability. Macromolecules 40:1018–1027CrossRefGoogle Scholar
  9. Duperrier S, Bernard S, Calin A, Sigala C, Chiriac R, Miele P, Balan C (2007c) Design of a series of preceramic B-Tri(methylamino)borazine-based polymers as fiber precursors: shear rheology investigations. Macromolecules 40:1028–1034CrossRefGoogle Scholar
  10. Fahrländer M, Friedrich C (1999) Rheological properties of polymer blends with sphere-in-sphere morphology. Rheol Acta 38:206–213CrossRefGoogle Scholar
  11. Ferry J (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  12. Flores O, Schmalz T, Krenkel W, Heymann L, Motz G (2013) Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres. J Mater Chem A 1:15406–15415CrossRefGoogle Scholar
  13. Friedrich C, Honerkamp J, Weese J (1996) New ill-posed problems in rheology. Rheol Acta 35:186–193CrossRefGoogle Scholar
  14. Gray RW, Harrison G, Lamb J (1977) Dynamic viscoelastic behaviour of low-molecular-mass polystyrene melts. Proc R Soc A 356:77–102CrossRefGoogle Scholar
  15. Gregori G, Kleebe H, Brequel H, Enzo S, Ziegler G (2005) Microstructure evolution of precursors-derived SiCN ceramics upon thermal treatment between 1000 and 1400 °C. J Non-Cryst Solids 351:1393–1402CrossRefGoogle Scholar
  16. Greil P (2000) Polymer derived engineering ceramics. Adv Eng Mater 2:339–348CrossRefGoogle Scholar
  17. Günthner M, Kraus T, Dierdorf A, Decker D, Krenkel W, Motz G (2009) Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J Eur Ceram Soc 29:2061–2068CrossRefGoogle Scholar
  18. Hacker J, Motz G, Ziegler G (2001) Processing of SICN-fibres prepared from polycarbosilazanes. In: Heinrich JG, Aldinger F (eds) Ceramic materials and components for engines. Wiley-VCH Verlag GmbH, Weinheim, pp 653–656CrossRefGoogle Scholar
  19. Hacker J (2006) Entwicklung einer preiswerten keramischen Faser für den Anwendungsbereich bis 1400 Grad Celsius auf der Basis eines spinnfähigen siliciumorganischen Polymers. Utz, MünchenGoogle Scholar
  20. Kleebe H-J, Störmer H, Trassl S, Ziegler G (2001) Thermal stability of SiCN ceramics studied by spectroscopy and electron microscopy. Appl Organomet Chem 15:858–866CrossRefGoogle Scholar
  21. Kleebe H-J, Suttor D, Müller H, Ziegler G (2005) Decomposition-crystallization of polymer-derived Si-C-N ceramics. J Am Ceram Soc 81:2971–2977CrossRefGoogle Scholar
  22. Kraus T, Günthner M, Krenkel W, Motz G (2009) cBN particle filled SiCN precursor coatings. Adv Appl Ceram 108:476–482CrossRefGoogle Scholar
  23. Krenkel W, International Conference on High-Temperature Ceramic-Matrix Composites (2001) High temperature ceramic matrix composites. Wiley-VCH, New YorkCrossRefGoogle Scholar
  24. Kroke E, Li Y-L, Konetschny C, Lecomte E, Fasel C, Riedel R (2000) Silazane derived ceramics and related materials. Mater Sci Eng R 26:97–199CrossRefGoogle Scholar
  25. Li Y-L, Kroke E, Riedel R, Fasel C, Gervais C, Babonneau F (2001) Thermal cross-linking and pyrolytic conversion of poly(ureamethylvinyl)silazanes to silicon-based ceramics. Appl Organomet Chem 15:820–832CrossRefGoogle Scholar
  26. Lücke J, Hacker J, Suttor D, Ziegler G (1997) Synthesis and characterization of silazane-based polymers as precursors for ceramic matrix composites. Appl Organomet Chem 11:181–194CrossRefGoogle Scholar
  27. Masuda T, Kitagawa K, Inoue T, Onogi S (1970) Rheological properties of anionic polystyrenes. II. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3:116–125CrossRefGoogle Scholar
  28. Model FS, Redl G, Rochow EG (1966) Internal motion in organosilicon polymers. I. Linear dimethylpolysilazane. J Polym Sci A-1 Polym Chem 4:639–647CrossRefGoogle Scholar
  29. Model FS, Rochow EG (1970) Internal motion in organosilicon polymers. II. Dimethylpolysilazanes crosslinked through silicon. J Polym Sci A-2 Polym Phys 8:999–1010CrossRefGoogle Scholar
  30. Morcos RM, Mera G, Navrotsky A, Varga T, Riedel R, Poli F, Müller K (2008a) Enthalpy of formation of carbon-rich polymer-derived amorphous SiCN ceramics. J Am Ceram Soc 91:3349–3354CrossRefGoogle Scholar
  31. Morcos RM, Navrotsky A, Varga T, Blum Y, Ahn D, Poli F, Müller K, Raj R (2008b) Energetics of SixOyCz polymer-derived ceramics prepared under varying conditions. J Am Ceram Soc 91:2969–2974CrossRefGoogle Scholar
  32. Motz G (1995) Bis(tert-butylamino)silan und verwandte Verbindungen. Universität Stuttgart, StuttgartGoogle Scholar
  33. Motz G, Hacker J, Ziegler G, Schawaller D, Clauss B (2002) New SiCN fibers from the ABSE polycarbosilazane. Ceram Eng Sci Proc 23:255–260CrossRefGoogle Scholar
  34. Motz G, Schmidt S, Beyer S (2008) The PIP-process: precursor properties and applications. In: Krenkel W (ed) Ceramic matrix composites. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 165–186CrossRefGoogle Scholar
  35. Plazek DJ, Bero CA (2003) Precise glass temperatures. J Phys: Condens Matter 15:S789–S802Google Scholar
  36. Plazek DJ (1992) What’s wrong with the moduli Charley Brown? or Get the H out and go to L. J Rheol 36:1671CrossRefGoogle Scholar
  37. Plazek DJ, Echeverrı́a I (2000) Don’t cry for me Charlie Brown, or with compliance comes comprehension. J Rheol 44:831CrossRefGoogle Scholar
  38. Schmalz T, Hausherr JM, Müller W, Kraus T, Krenkel W, Kempe R, Motz G (2011) Analysis of polyethylene-particle filled SiCN precursor and the resulting porous ceramics with emphasis on using micro computed tomography. J Ceram Soc Jpn 119:477–482CrossRefGoogle Scholar
  39. Schmidt M, Münstedt H (2002) Reological behaviour of concentrated monodisperse suspensions as a function of preshear conditions and temperature: an experimental study. Rheol Acta 41:193–204CrossRefGoogle Scholar
  40. Seyferth D, Schwark JM, Stewart RM (1989) Stoichiometric and catalytic ring opening of hexaalkylcyclodisilazanes by organoalkali reagents. Organometallics 8:1980–1986CrossRefGoogle Scholar
  41. Shibayama K, Suzuki Y (1965) Effect of crosslinking density on the viscoelastic properties of unsaturated polyesters. J Polym Sci A Gen Pap 3:2637–2651CrossRefGoogle Scholar
  42. Stormer H, Kleebe H, Ziegler G (2007) Metastable SiCN glass matrices studied by energy-filtered electron diffraction pattern analysis. J Non-Cryst Solids 353:2867–2877CrossRefGoogle Scholar
  43. Takahashi T, Kaschta J, Münstedt H (2001) Melt rheology and structure of silicone resins. Rheol Acta 40:490–498CrossRefGoogle Scholar
  44. Trassl S (2002) Spektroskopische Charakterisierung des Einflusses der Precursorstruktur auf das Pyrolyseverhalten von Si-C-N-Precursorkeramiken. Utz Verlag, MünchenGoogle Scholar
  45. Trassl S, Motz G, Rössler E, Ziegler G (2004) Characterization of the free-carbon phase in precursor-derived Si-C-N ceramics: I, spectroscopic methods. J Am Ceram Soc 85:239–244CrossRefGoogle Scholar
  46. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior—an introduction. Springer, BerlinCrossRefGoogle Scholar
  47. Verbeek W, Winter G (1974) Formkoerper aus Siliciumcarbid und Verfahren zu ihrer Herstellung Patent DE2236078Google Scholar
  48. Wolff F, Kugler C, Münstedt H (2011) Viscoelastic properties of a silicone resin during crosslinking. Rheol Acta 50:917–924CrossRefGoogle Scholar
  49. Wynne KJ, Rice RW (1984) Ceramics via polymer pyrolysis. Annu Rev Mater Sci 14:297–334CrossRefGoogle Scholar
  50. Yajima S, Okamura K, Hayashi J, Omori M (1976) Synthesis of continuous Sic fibers with high tensile strength. J Am Ceram Soc 59:324–327CrossRefGoogle Scholar
  51. Zeldin M, Wynne KJ, Allcock HR (1988) Inorganic and organometallic polymers macromolecules containing silicon, phosphorus, and other inorganic elements. ACS Symposium Series, American Chemical Society, WashingtonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Ceramic Materials EngineeringUniversity of BayreuthBayreuthGermany
  2. 2.Department of Applied Mechanics and Fluid DynamicsUniversity of BayreuthBayreuthGermany

Personalised recommendations