Rheologica Acta

, Volume 53, Issue 12, pp 947–957 | Cite as

Restructuring and aging in a capillary suspension

  • Erin Koos
  • Wolfgang Kannowade
  • Norbert Willenbacher
Original Contribution


The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1 % and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.


Capillary suspensions Aging Capillary force 



EK would like to acknowledge financial support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement no. 335380.

Supplementary material

397_2014_805_MOESM1_ESM.pdf (576 kb)
ESM 1 (PDF 576 kb)


  1. Aarons L, Sundaresan S (2006) Shear flow of assemblies of cohesive and non-cohesive granular materials. Powder Technol 169(1):10–21CrossRefGoogle Scholar
  2. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interf Sci 100(102):503–546CrossRefGoogle Scholar
  3. Barnes HA (1989) Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366CrossRefGoogle Scholar
  4. Bocquet L, Charlaix E, Ciliberto S, Crassous J (1998) Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396:735–737CrossRefGoogle Scholar
  5. Butt HJ (2008) Capillary forces: influence of roughness and heterogeneity. Langmuir 24(9):4715–4721CrossRefGoogle Scholar
  6. Butt HJ, Kappl M (2009) Normal capillary forces. Adv Colloid Interf Sci 146(1–2):48–60CrossRefGoogle Scholar
  7. Cavalier K, Larché F (2002) Effects of water on the rheological properties of calcite suspensions in dioctylphthalate. Colloids Surf A 197(1–3):173–181CrossRefGoogle Scholar
  8. Cheng TL, Wang YU (2012) Spontaneous formation of stable capillary bridges for firming compact colloidal microstructures in phase separating liquids: a computational study. Langmuir 28(5):2696–2703CrossRefGoogle Scholar
  9. Dittmann J, Koos E, Willenbacher N (2013) Ceramic capillary suspensions: novel processing route for macroporous ceramic materials. J Am Ceram Soc 96(2):391–397Google Scholar
  10. Domenech T, Velankar SS (2014) Capillary driven percolating networks in ternary blends of immiscible polymers and silica particles. Rheol Acta 53(8):593–605CrossRefGoogle Scholar
  11. Eggleton AEJ, Puddington IE (1954) The effect of temperature on suspensions of glass beads in toluene containing various percentages of water. Can J Chem 32(2):86–93CrossRefGoogle Scholar
  12. Erwin BM, Vlassopoulos D, Cloitre M (2010) Rheological fingerprinting of an aging soft colloidal glass. J Rheol 54(4):915–939CrossRefGoogle Scholar
  13. Fielding SM, Sollich P, Cates ME (2000) Aging and rheology in soft materials. J Rheol 44(2):323–369CrossRefGoogle Scholar
  14. Fortini A (2012) Clustering and gelation of hard spheres induced by the Pickering effect. Phys Rev E 85(4):040401CrossRefGoogle Scholar
  15. Fournier CO, Fradette L, Tanguy PA (2009) Effect of dispersed phase viscosity on solid-stabilized emulsions. Chem Eng Res Des 87(4):499–506CrossRefGoogle Scholar
  16. Fraysse N, Thomé H, Petit L (1999) Humidity effects on the stability of a sandpile. Eur Phys J B 11(4):615–619CrossRefGoogle Scholar
  17. Gallay W, Puddington IE (1943) Sedimentation volumes and anamalous flow in lyophobic suspensions. Can J Chem 21(2):171Google Scholar
  18. Gao C (1997) Theory of menisci and its applications. Appl Phys Lett 71(13):1801–1803CrossRefGoogle Scholar
  19. Gillies G, Büscher K, Preuss M, Kappl M, Butt HJ, Graf K (2005) Contact angles and wetting behaviour of single micron-sized particles. J Phys Condens Matter 17(9):445–464CrossRefGoogle Scholar
  20. Gögelein C, Brinkmann M, Schröter M, Herminghaus S (2010) Controlling the formation of capillary bridges in binary liquid mixtures. Langmuir 26(22):17184–17189CrossRefGoogle Scholar
  21. Herminghaus S (2005) Dynamics of wet granular matter. Adv Phys 54(3):221–261CrossRefGoogle Scholar
  22. Hoffmann S, Koos E, Willenbacher N (2014) Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll 40:44–52CrossRefGoogle Scholar
  23. Kao SV, Nielsen LE, Hill CT (1975) Rheology of concentrated suspensions of spheres II Suspensions agglomerated by an immiscible second liquid. J Colloid Interface Sci 53(3):367–373CrossRefGoogle Scholar
  24. Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331(6019):897–900CrossRefGoogle Scholar
  25. Koos E, Willenbacher N (2012) Particle configuration and gelation in capillary suspensions. Soft Matter 8(14):3988–3994CrossRefGoogle Scholar
  26. Koos E, Dittmann J, Willenbacher N (2011) Kapillarkräft in Suspensionen: rheologische Eigenschaften und potenzielle Anwendungen. Chemie Ingenieur Technik 83(8):1305–1309CrossRefGoogle Scholar
  27. Koos E, Johannsmeier J, Schwebler L, Willenbacher N (2012) Tuning suspension rheology using capillary forces. Soft Matter 8(24):6620–6628CrossRefGoogle Scholar
  28. Leong YK, Scales PJ, Healy TW, Boger DV, Bruscall R (1993) Rheological evidence of adsorbate-mediated short-range steric forces in concentrated dispersions. J Chemical Soc-Faraday Trans 89(14):2473–2478CrossRefGoogle Scholar
  29. Lian G, Thornton C, Adams MJ (1993) A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci 161(1):138–147CrossRefGoogle Scholar
  30. Mason G, Clark W (1968) Tensile strength of wet granular materials. Nature 219:149–150CrossRefGoogle Scholar
  31. McCulfor J, Himes P, Anklam MR (2011) The effects of capillary forces on the flow properties of glass particle suspensions in mineral oil. AlChE Journal 57(9):2334–2340CrossRefGoogle Scholar
  32. Megias-Alguacil D, Gauckler LJ (2009) Capillary forces between two solid spheres linked by a concave liquid bridge: regions of existence and forces mapping. AlChE Journal 55(5):1103–1109CrossRefGoogle Scholar
  33. Mehrotra VP, Sastry KVS (1980) Pendular bond strength between unequal-sized spherical-particles. Powder Technol 25(2):203–214CrossRefGoogle Scholar
  34. Nakae H, Inui R, Hirata Y, Saito H (1998) Effects of surface roughness on wettability. Acta Mater 46(7):2313–2318CrossRefGoogle Scholar
  35. Narayanan T, Kumar A, Gopal ES, Beysens D, Guenoun P, Zalczer G (1993) Reversible flocculation of silica colloids in liquid mixtures. Phys Rev E 48(3):1989–1994CrossRefGoogle Scholar
  36. Negi AS, Osuji CO (2010) Physical aging and relaxation of residual stresses in a colloidal glass following flow cessation. J Rheol 54(5):943–958CrossRefGoogle Scholar
  37. Orr FM, Scriven LE, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 67(4):723–742CrossRefGoogle Scholar
  38. Ovarlez G, Coussot P (2007) Physical age of soft-jammed systems. Phys Rev E 76(1):011406CrossRefGoogle Scholar
  39. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676CrossRefGoogle Scholar
  40. Pietsch WB (1968) Tensile strength of granular materials. Nature 217:736–737CrossRefGoogle Scholar
  41. Pietsch WB, Rumpf H (1967) Haftkraft, Kapillardruck, Flüssigkeitsvolumen und Grenzwinkel einer Flüssigkeitsbrücke zwischen zwei Kugeln. Chemie Ingenieur Technik 39(15):885–893CrossRefGoogle Scholar
  42. Rahbari SHE, Vollmer J, Herminghaus S, Brinkmann M (2009) A response function perspective on yielding of wet granular matter. Europhys Lett 87(1):14002CrossRefGoogle Scholar
  43. Rumpf H (1962) The strength of granules and agglomerates. In: Knepper WA (ed) Agglomeration. Wiley, New York, pp 379–418Google Scholar
  44. Schubert H (1982) Kapillarität in porösen Feststoffsystemen. Springer, BerlinCrossRefGoogle Scholar
  45. Schubert H (1984) Capillary forces—modeling and application in particulate technology. Powder Technol 37(1):105–116CrossRefGoogle Scholar
  46. Seville JPK, Willett CD, Knight PC (2000) Interparticle forces in fluidisation: a review. Powder Technol 113(3):261–268CrossRefGoogle Scholar
  47. Stiller S, Gers-Barlag H, Lergenmueller M, Pflücker F, Schulzb J, Wittern KP, Daniels R (2004) Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides. Colloids Surf A 232(2–3):261–267CrossRefGoogle Scholar
  48. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994CrossRefGoogle Scholar
  49. Willenbacher N, Hanciogullari H, Wagner HG (1997) High shear viscosity of paper coating colors—more than just viscosity. Chem Eng Technol 20(8):557–563CrossRefGoogle Scholar
  50. Willett CD, Adams MJ, Johnson SA, Seville JPK (2000) Capillary bridges between two spherical bodies. Langmuir 16(24):9396–9405CrossRefGoogle Scholar
  51. Yan LL, Wang K, Wu JS, Ye L (2007) Hydrophobicity of model surfaces with closely packed nano- and micro-spheres. Colloids Surf A 296(1–3):123–131CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Erin Koos
    • 1
  • Wolfgang Kannowade
    • 1
  • Norbert Willenbacher
    • 1
  1. 1.Institute for Mechanical Process Engineering and MechanicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations