Rheologica Acta

, Volume 53, Issue 5–6, pp 417–443 | Cite as

Discrete element study of viscous flow in magnetorheological fluids

  • Hanna G. Lagger
  • Claas Bierwisch
  • Jan G. Korvink
  • Michael Moseler
Original Contribution


Using discrete element simulations, we gain insight into the structure of a magnetorheological fluid (MRF) under shear. In simulations with flat walls, the particles arrange in chains, sheet-like structures, or columns along the magnetic field lines, depending on the strength of the applied external magnetic field. Corresponding to the structure formation, three different types of failure mechanisms can be identified. For the characterization of the different regimes, specific particle coordination numbers are introduced. The three structural regimes can be distinguished and described by means of these coordination numbers. To analyze the contact between the MRF particles and the walls of the shear cell, additional simulations with rough walls have been conducted. The resulting structure formation could be successfully classified by the introduced coordination numbers. Based on the analysis of the shear stress transmission both in the case of flat and rough walls, possibilities for shear stress enhancement for technological applications are discussed.


Magnetorheology Discrete element method Numerical simulation Shear flow Structure formation 


  1. (–) SimPARTIX ®; simulation suite. http://www.simpartix.com
  2. Bardet JP, Vardoulakis I (2001) The asymmetry of stress in granular media. Int J Solids Struct 38(2):353–367. doi:10.1016/S0020-7683(00)00021-4 CrossRefGoogle Scholar
  3. Bierwisch CS (2009) Numerical simulations of granular flow and filling. PhD thesis, University of Freiburg, GermanyGoogle Scholar
  4. Bossis G, Grasselli Y, Lemaire E, Persello J, Petit L (1994) Phase-separation and flow-induced anisotropy in electrorheological fluids. Europhys Lett 25(5):335–340. doi:10.1209/0295-5075/25/5/004 CrossRefGoogle Scholar
  5. Bossis G, Lacis S, Meunier A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252(1–3):224–228. doi:10.1016/S0304-8853(02)00680-7 CrossRefGoogle Scholar
  6. Bossis G, Volkova O, Lacis S, Meunier A (2003) Magnetorheology: fluids, structures and rheology. In: Odenbach S (ed) Ferrofluids, vol 594. Springer, Berlin Heidelberg, pp 202–230CrossRefGoogle Scholar
  7. de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710. doi:10.1039/c0sm01221a CrossRefGoogle Scholar
  8. Ginder JM, Davis LC (1994) Shear stresses in magnetorheological fluids—role of magnetic saturation. Appl Phys Lett 65(26):3410–3412. doi:10.1063/1.112408 CrossRefGoogle Scholar
  9. Henley S, Filisko FE (1999) Flow profiles of electrorheological suspensions: an alternative model for er activity. J Rheol 43(5):1323–1336. doi:10.1122/1.551024 CrossRefGoogle Scholar
  10. Hertz H (1881) Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik: 156–171Google Scholar
  11. Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkGoogle Scholar
  12. Jiles DC, Atherton DL (1986) Theory of ferromagnetichysteresis. J Magn Magn Mater 61(1–2):48–60. doi:10.1016/0304-8853(86)90066-1 CrossRefGoogle Scholar
  13. Keaveny EE, Maxey MR (2008) Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids. J Comput Phys 227(22):9554–9571. doi:10.1016/j.jcp.2008.07.008 CrossRefGoogle Scholar
  14. Klingenberg DJ, van Swol F, Zukoski CF (1989) Dynamic simulation of electrorheological suspensions. J Chem Phys 91(12):7888–7895. doi:10.1063/1.457256 CrossRefGoogle Scholar
  15. Klingenberg DJ, Ulicny JC, Golden MA (2007) Mason numbers for magnetorheology. J Rheol 51(5):883–893. doi:10.1122/1.2764089 CrossRefGoogle Scholar
  16. Lācis S, Goško D (2009) Direct numerical simulation of mr suspension: the role of viscous and magnetic interactions between particles. J Phys Conf Ser 149Google Scholar
  17. Laun HM, Gabriel C, Kieburg C (2011) Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate-plate magnetorheometry. Rheol Acta 50(2):141–157. doi:10.1007/s00397-011-0531-8 CrossRefGoogle Scholar
  18. Lemaire E, Bossis G (1991) Yield stress and wall effects in magnetic colloidal suspensions. J Phys D Appl Phys 24(8):1473–1477. doi:10.1088/0022-3727/24/8/037 CrossRefGoogle Scholar
  19. Martin JE (2001) Thermal chain model of electrorheology and magnetorheology. Phys Rev E 63(1):011–406Google Scholar
  20. Melle S, Calderón OG, Rubio MA, Fuller GG (2003) Microstructure evolution in magnetorheological suspensions governed by mason number. Phys Rev E 68(4):041–503. doi:10.1103/PhysRevE.68.041503 CrossRefGoogle Scholar
  21. Melrose JR (1991) Sheared dipolar suspensions. Phys Rev A 44(8):R4789–R4792CrossRefGoogle Scholar
  22. Otsubo Y, Edamura K (1996) Relation between yield stress and column thickness in electrorheological fluids. Colloids Surf A Physicochem Eng Asp 109:63–69. doi:10.1016/0927-7757(96)03474-7 CrossRefGoogle Scholar
  23. Pappas Y, Klingenberg D (2006) Simulations of magnetorheological suspensions in poiseuille flow. Rheol Acta 45(5):621–629CrossRefGoogle Scholar
  24. Parthasarathy M, Klingenberg D (1996) Electrorheology: mechanisms and models. Mater Sci Eng R Rep 17(2):57–103. doi:10.1016/0927-796X(96)00191-X CrossRefGoogle Scholar
  25. Raghunathan A, Melikhov Y, Snyder JE, Jiles DC (2009) Generalized form of anhysteretic magnetization function for Jiles-Atherton theory of hysteresis. Appl Phys Lett 95(17):172–510. doi:10.1063/1.3249581 CrossRefGoogle Scholar
  26. Schäfer J, Dippel S, Wolf DE (1996) Force schemes in simulations of granular materials. J Phys I 6(1):5–20Google Scholar
  27. Tang X, Li WH, Wang XJ, Zhang PQ (1999) Structure evolution of electrorheological fluids under flow conditions. Int J Mod Phys B 13(14–16):1806–1813. doi:10.1142/S021797929900182X CrossRefGoogle Scholar
  28. Tang X, Conrad H (1996) Quasistatic measurements on a magnetorheological fluid. J Rheol 40(6):1167–1178. doi:10.1122/1.550779 CrossRefGoogle Scholar
  29. Ulicny JC, Snavely KS, Golden MA, Klingenberg DJ (2010) Enhancing magnetorheology with nonmagnetizable particles. Appl Phys Lett 96(23):231–903. doi:10.1063/1.3431608 CrossRefGoogle Scholar
  30. Volkova O (1999) Shear banded flows and nematic-to-isotropic transition in ER and MR fluids. Phys Rev Lett 82:233– 236CrossRefGoogle Scholar
  31. von Pfeil K, Graham MD, Klingenberg DJ, Morris JF (2003) Structure evolution in electrorheological and magnetorheological suspensions from a continuum perspective. J Appl Phys 93(9):5769–5779. doi:10.1063/1.1563037 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hanna G. Lagger
    • 1
    • 2
  • Claas Bierwisch
    • 1
  • Jan G. Korvink
    • 3
  • Michael Moseler
    • 1
    • 2
  1. 1.MikroTribologie Centrum μTC, Fraunhofer IWMFreiburgGermany
  2. 2.Physics Institute of the University of FreiburgFreiburgGermany
  3. 3.IMTEK—Institute of Microsystem Technology, Laboratory for SimulationFreiburgGermany

Personalised recommendations