Rheologica Acta

, Volume 52, Issue 10–12, pp 881–889 | Cite as

Rheological behavior of PAN-based electrolytic gel containing tetrahexylammonium and magnesium iodide for photoelectrochemical applications

  • N. Tz. DintchevaEmail author
  • M. Furlani
  • W. J. M. J. S. R. Jayasundara
  • T. M. W. J. Bandara
  • B.-E. Mellander
  • F. P. La Mantia
Original Contribution


Polymeric gel electrolyte systems have gained great interest in the last few years due to their suitability for the manufacturing of ionic devices, for example, for dye-sensitized solar cells (DSSCs). In this work, the rheological behavior at fixed temperatures and at fixed frequency of complex systems based on polyacrylonitrile (PAN) and plasticizers such as ethylene carbonate (EC) and propylene carbonate (PC) containing tetrahexylammonium (Hex4NI) and magnesium iodide (MgI2) was studied. These results for these PAN-EC-PC gels suggest a structural change of the “strong-to-weak” type at about 60 °C and the beginning of the gel–sol transition at about 75 °C. These transitions occur at higher temperatures for polymer electrolyte gels containing Hex4NI and even higher with MgI2, suggesting the possibility of post-factum treatments of the gels and of the DSSCs to improve their performance. The rheological results suggest that the progressive substitution of Hex4NI with MgI2leads to a significant improvement in the rheological behavior of the PAN-based electrolytic gel due to the decrease of the mobility of the macromolecules and probably to an increase of the interaction between the inorganic ions and the macromolecules. Moreover, when these gels were used in DSSCs, the sample containing 80(Hex4NI)/40(MgI2) showed the best performance considering its rheological and calorimetric behavior as well as energy conversation efficiency and short-circuit current density.


Rheological behavior PAN-based polymeric gel Organic and inorganic salts 


  1. Armand MB, Chabagno JM, Duclot M (1979) Fast ion transport in solid. In: Vashishta P, Mundy JN, Shenoy GK (eds). Elsevier, North HollandGoogle Scholar
  2. Bandara TMWJ, Jayasundara WJMJSR, Dissanayake MAKL, Albinsson I, Mellander BE (2012a) Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. Phys Chem Chem Phys 14:8620–8627. doi: 10.1016/j.egypro.2011.12.887 CrossRefGoogle Scholar
  3. Bandara TMWJ, Svensson T, Dissanayake MAKL, Furlani M, Jayasundara WJMJSR, Mellander BE (2012b) Tetrahexylammonium iodide containing solid and gel polymer electrolytes for dye sensitized solar cells. Energy Procedia 14:1607–1312. doi: 10.1016/j.egypro.2011.12.887 CrossRefGoogle Scholar
  4. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. doi: 10.1021/cr900356p CrossRefGoogle Scholar
  5. Jayathialaka PARD, Dissanayake MAKL, Albinson I, Mellander BE (2003) Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LIFTSI. Solid State Ionics 156:179–195.CrossRefGoogle Scholar
  6. Lapasin R, Pricl S (1995) In: Rheology of industrial polysaccharides: theory and applications. Blackie Academic and Professional, LondonCrossRefGoogle Scholar
  7. Li B, Wang L, Kang B, Wang P, Qiu Y (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:549–573. doi: 10.1016/j.solmat.2005.04.039 CrossRefGoogle Scholar
  8. Mitra S, Shukla AK, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218.CrossRefGoogle Scholar
  9. Nicotera I, Oliviero C, Ranieri GA, Spadafora A, Castriota M, Cazzanelli E (2002) Temperature evolution of thermoreversible polymer gel electrolytes LiClO4/ethylene carbonate/poly(acrylonitrile). J Chem Phys 117:7373–7380. doi: 10.1063/1.1507773 CrossRefGoogle Scholar
  10. Nicotera I, Coppola L, Oliviero C, Russo A, Ranieri GA (2004) Some physicochemical properties of PAN-based electrolytes: solution and gel microstructures. Solid State Ionics 167:213–220. doi: 10.1016/j.ssi.2003.09.007 CrossRefGoogle Scholar
  11. Patil JS, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Digest J Nanomat Biostruct 5:241–248Google Scholar
  12. Sekhon SS (2003) Conductivity behaviour of polymer gel electrolytes: role of polymer. Bull Mater Sci 26:321–328. doi: 10.1007/BF02707454 CrossRefGoogle Scholar
  13. Voice AM, Davies GR, Ward IM (1997) Structure of poly(vinylidene fluoride) gel electrolytes. Polym Gels Netw 5:123–144.CrossRefGoogle Scholar
  14. Wu QY, Chen XN, Wan LS, Xu ZK (2012) Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J Phys Chem: Part B 116:8321–8330. doi: 10.1021/jp304167f CrossRefGoogle Scholar
  15. Yang H, Yu C, Song Q, Xia Y, Li F, Chen Z, Li X, Yi T, Huang C (2006) High-temperature and long-term stable solid-state electrolyte for dye-sensitized solar cells by self-assembly. Chem Mater 18:5173–5177. doi: 10.1021/cm061112d CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Tz. Dintcheva
    • 1
    Email author
  • M. Furlani
    • 2
  • W. J. M. J. S. R. Jayasundara
    • 2
    • 3
  • T. M. W. J. Bandara
    • 2
    • 4
  • B.-E. Mellander
    • 2
  • F. P. La Mantia
    • 1
  1. 1.Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei MaterialiUniversità di PalermoPalermoItaly
  2. 2.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden
  3. 3.Department of Physics and Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  4. 4.Department of Physical SciencesRajarata University of Sri LankaMihintaleSri Lanka

Personalised recommendations