Rheologica Acta

, Volume 52, Issue 5, pp 515–527 | Cite as

Rheology and microstructure of pastes with crystal network

  • Prachi TharejaEmail author
Original Contribution


This article reviews scientific studies which have been focused on the structure–property relationships of pastes with crystal network by considering fat crystal network as the key example. The review illustrates how rheology can be a valuable tool to characterize the mechanical behavior in these pastes and also provide information about the underlying microstructure in conjunction with various complimentary techniques. Rheological tests which can be adopted to determine the yielding behavior of the crystal network containing pastes are also presented. We have used these methods and concepts to characterize fatty acid crystal network to study a system emulating a skin cream formulation. It is hoped that the rheological fundamentals and the microstructural characterization techniques discussed in context of fat crystal network can be translated to other experimental systems where crystal-forming components are added to impart pasty material characteristics.


Paste Crystal network Rheology Yield stress Fractal 



The author would like to thank Professor Norman J. Wagner at the University of Delaware for his helpful comments and fruitful discussions. Dr Sharad Gupta at IIT Gandhinagar is acknowledged for critically proofreading the manuscript.


  1. Abend S, Lagaly G (2000) Sol–gel transitions of sodium montmorillonite dispersions. Appl Clay Sci 16(3–4):201–227CrossRefGoogle Scholar
  2. Acevedo NC, Block JM, Marangoni AG (2012a) Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Faraday Discuss 58:171–94CrossRefGoogle Scholar
  3. Acevedo NC, Marangoni AG (2010a) Characterization of the nanoscale in triacylglycerol crystal networks. Cryst Growth Des 10(8):3327–3333. doi: 10.1021/cg100468e CrossRefGoogle Scholar
  4. Acevedo NC, Marangoni AG (2010b) Toward nanoscale engineering of triacylglycerol crystal networks. Cryst Growth Des 10(8):3334–3339. doi: 10.1021/cg100469x CrossRefGoogle Scholar
  5. Acevedo NC, Peyronel F, Marangoni AG (2012b) Nanoscale structure intercrystalline interactions in fat crystal networks. Curr Opin Colloid Interface Sci 16(5):374–383CrossRefGoogle Scholar
  6. Alvarez-Mitre FM, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF (2012) Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Res Int 49(1):580–587CrossRefGoogle Scholar
  7. Awad TS, Rogers MA, Marangoni AG (2004) Scaling behavior of the elastic modulus in colloidal networks of fat crystals. J Phys Chem B 108(1):171–179. doi: 10.1021/jp036285u CrossRefGoogle Scholar
  8. Balberg I, Anderson CH, Alexander S, Wagner N (1984a) Excluded volume and its relation to the onset of percolation. Phys Rev B 30(7):3933–3943CrossRefGoogle Scholar
  9. Balberg I, Binenbaum N, Wagner N (1984b) Percolation thresholds in the 3-dimensional Sticks system. Phys Rev Lett 52(17):1465–1468CrossRefGoogle Scholar
  10. Barnes HA (1999) The yield stress—a review or ‘pi alpha nu tau alpha rho epsilon iota’—everything flows. J Non-Newtonian Fluid Mech 81(1–2):133–178CrossRefGoogle Scholar
  11. Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 47(5):1211–1226. doi: 10.1122/1.1595098 CrossRefGoogle Scholar
  12. Blonk JCG, Aalst Van H (1993) Confocal scanning laser microscopy in food research. Food Res Int 26(4):297–311CrossRefGoogle Scholar
  13. Bond AD (2004) On the crystal structures and melting point alternation of the n-alkyl carboxylic acids. New J Chem 28(1):104–114. doi: 10.1039/b307208h CrossRefGoogle Scholar
  14. Boodhoo MV, Humphrey KL, Narine SS (2009) Relative hardness of fat crystal networks using force displacement curves. Int J Food Prop 12(1):129–144. doi: 10.1080/10942910802223396 CrossRefGoogle Scholar
  15. Bouzidi L, Boodhoo M, Humphrey KL, Narine SS (2005) Use of first and second derivatives to accurately determine key parameters of DSC thermographs in lipid crystallization studies. Thermochimica Acta 439(1–2):94–102. doi: 10.1016/j.tca.2005.09.013 CrossRefGoogle Scholar
  16. Bremer LGB, van Vliet T, Walstra P (1989) Theoretical and experimental study of the fractal nature of the structure of casein gels. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 85(10):3359–3372Google Scholar
  17. Buscall R, Mills PDA, Goodwin JW, Lawson DW (1988) Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 84(12):4249–4260Google Scholar
  18. Callaghan IC, Ottewill RH (1974) Interparticle forces in montmorillonite gels. Faraday Discuss Chem Soc 57:110–118CrossRefGoogle Scholar
  19. Campos R, Narine SS, Marangoni AG (2002) Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Res Int 35(10):971–981CrossRefGoogle Scholar
  20. Cassin G, de Costa C, van Duynhoven JPM, Agterof WGM (1998) Investigation of the gel to coagel phase transition in monoglyceride-water systems. Langmuir 14(20):5757–5763CrossRefGoogle Scholar
  21. Cebula DJ, Smith KW (1991) Differential scanning calorimetry of confectionery fats. Pure triglycerides—effects of cooling and heating rate variation. J Amer Oil Chem Soc 68(8):591–595CrossRefGoogle Scholar
  22. Chen DTN, Chen K, Hough LA, Islam MF, Yodh AG (2010) Rheology of carbon nanotube networks during gelation. Macromolecules 43(4):2048–2053CrossRefGoogle Scholar
  23. Coussot P (2005) Rheometry of pastes, suspensions and granular materials: applications in industry and environment. Wiley, Hoboken NJCrossRefGoogle Scholar
  24. Coussot P (2007) Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3(5):528–540. doi: 10.1039/b611021p CrossRefGoogle Scholar
  25. Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994CrossRefGoogle Scholar
  26. De Graef V, Depypere Fdr, Minnaert M, Dewettinck K (2011) Chocolate yield stress as measured by oscillatory rheology. Food Res Int 44(9):2660–2665CrossRefGoogle Scholar
  27. De Graef V, Dewettinck K, Verbeken D, Foubert I (2006) Rheological behavior of crystallizing palm oil. Eur J Lipid Sci Technol 108(10):864–870. doi: 10.1002/ejlt.200600102 CrossRefGoogle Scholar
  28. De Graef V, Goderis B, Van Puyvelde P, Foubert I, Dewettinck K (2008) Development of a rheological method to characterize palm oil crystallizing under shear. Eur J Lipid Sci Technol 110(6):521–529. doi:10.1002/ejlt.200700315CrossRefGoogle Scholar
  29. de Graef V, van Puyvelde P, Goderis B, Dewettinck K (2009) Influence of shear flow on polymorphic behavior and microstructural development during palm oil crystallization. Eur J Lipid Sci Technol 111(3):290–302. doi: 10.1002/ejlt.200800181 CrossRefGoogle Scholar
  30. Denn M, Bonn D (2011) Issues in the flow of yield-stress liquids. Rheologica Acta 50(4):307–315. doi: 10.1007/s00397-010-0504-3 CrossRefGoogle Scholar
  31. Divoux T, Barentin C, Manneville S (2011) Stress overshoot in a simple yield stress fluid: an extensive study combining rheology and velocimetry. Soft Matter 7(19):9335–9349CrossRefGoogle Scholar
  32. Dullaert K, Mewis J (2005) Thixotropy: build-up and breakdown curves during flow. J Rheol 49(6):1213–1230. doi: 10.1122/1.2039868 CrossRefGoogle Scholar
  33. Foubert I, Fredrick E, Vereecken J, Sichien M, Dewettinck K (2008) Stop-and-return DSC method to study fat crystallization. Thermochimica Acta 471(1–2):7–13. doi: 10.1016/j.tca.2008.02.005 CrossRefGoogle Scholar
  34. Gliguem H, Lopez C, Michon C, Lesieur P, Ollivon M (2011) The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. J Agric Food Chem 59(7):3125–3134. doi: 10.1021/jf103641f CrossRefGoogle Scholar
  35. Heertje I (1976) Electron-microscopy in food research. Ultramicroscopy 2(1):127–127Google Scholar
  36. Heertje I (1993) Microstructural studies in fat research. Food Struct 12(1):77–94Google Scholar
  37. Heertje I, Leunis M (1997) Measurement of shape and size of fat crystals by electron microscopy. Food Sci Technol 30(2):141–146Google Scholar
  38. Heertje I, Vaneendenburg J, Cornelissen JM, Juriaanse AC (1988) The Effect of processing on some microstructural characteristics of fat spreads. Food Microstruct 7(2):189–193Google Scholar
  39. Higami M, Ueno S, Segawa T, Iwanami K, Sato K (2003) Simultaneous synchrotron radiation X-ray diffraction—DSC analysis of melting and crystallization behavior of trilauroylglycerol in nanoparticles of oil-in-water emulsion. J Amer Oil Chem Soc 80(8):731–739CrossRefGoogle Scholar
  40. Humphrey KL, Narine SS (2007) Diminishing marginal utility of cooling rate increase on the crystallization behavior and physical properties of a lipid sample. J Amer Oil Chem Soc 84(8):709–716. doi: 10.1007/s11746-007-1092-y CrossRefGoogle Scholar
  41. Juriaanse AC, Heertje I (1988) Microstructure of shortenings, margarine and butter—a review. Food Microstruct 7(2):181–188Google Scholar
  42. Kaufmann N, De Graef V, Dewettinck K, Wiking L (2012) Shear-induced crystal structure formation in milk fat and blends with rapeseed oil. Food Biophys 7:1–9. doi: 10.1007/s11483-012-9269-9 CrossRefGoogle Scholar
  43. Kawamura K (1979) Dsc Thermal-analysis of crystallization behavior in palm oil. J Amer Oil Chem Soc 56(8):753–758CrossRefGoogle Scholar
  44. Kawamura K (1980) DSC Thermal-analysis of crystallization behavior in palm oil. 2. J Amer Oil Chem Soc 57(1):48–51CrossRefGoogle Scholar
  45. Kawamura K (1983) The DSC thermal-analysis of palm oil crystallization. J Agric Chem Soc Jpn 57(5):475–485Google Scholar
  46. Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55(3):673–706CrossRefGoogle Scholar
  47. Lin YC, Koenderink GH, MacKintosh FC, Weitz DA (2007) Viscoelastic properties of microtubule networks. Macromolecules 40(21):7714–7720. doi: 10.1021/ma0708621 CrossRefGoogle Scholar
  48. Litwinenko JW, Rojas AM, Gerschenson LN, Marangoni AG (2002) Relationship between crystallization behavior, microstructure, and mechanical properties in a palm oil-based shortening. J Amer Oil Chem Soc 79(7):647–654CrossRefGoogle Scholar
  49. Lupi F, Gabriele D, de Cindio B (2011) Effect of Shear rate on crystallisation phenomena in olive oil-based organogels. Food and Bioprocess Technol 5:1–9. doi: 10.1007/s11947-011-0619-2 Google Scholar
  50. MacMillan SD, Roberts KJ, Rossi A, Wells MA, Polgreen MC, Smith IH (2002) In situ small angle X-ray scattering (SAXS) studies of polymorphism with the associated crystallization of cocoa butter fat using shearing conditions. Cryst Growth Des 2(3):221–226. doi: 10.1021/cg0155649 CrossRefGoogle Scholar
  51. Maleky F, Acevedo NC, Marangoni AG (2012) Cooling rate and dilution affect the nanostructure and microstructure differently in model fats. Eur J Lipid Sci Technol 114(7):748–759. doi: 10.1002/ejlt.201100314 CrossRefGoogle Scholar
  52. Maleky F, Marangoni AG (2008) Process development for continuous crystallization of fat under laminar shear. J Food Eng 89(4):399–407. doi: 10.1016/j.jfoodeng.2008.05.019 CrossRefGoogle Scholar
  53. Maleky F, Smith AK, Marangoni A (2011) Laminar shear effects on crystalline alignments and nanostructure of a triacylglycerol crystal network. Cryst Growth Des. doi: 10.1021/cg200014w
  54. Mandelbrot BB (1982) The fractal geometry of nature. Henry Holt and Company, New YorkGoogle Scholar
  55. Marangoni A (2005) Fat crystal networks. Marcel Dekker, New YorkGoogle Scholar
  56. Marangoni AG, Hartel RW (1998) Visualization and structural analysis of fat crystal networks. Food Technol 52(9):46–51Google Scholar
  57. Marangoni AG, McGauley SE (2003) Relationship between crystallization behavior and structure in cocoa butter. Cryst Growth Des 3(1):95–108. doi: 10.1021/cg025580l CrossRefGoogle Scholar
  58. Marangoni AG, Narine SS (2002) Identifying key structural indicators of mechanical strength in networks of fat crystals. Food Res Int 35(10):957–969CrossRefGoogle Scholar
  59. Marangoni AG, Rogers MA (2003) Structural basis for the yield stress in plastic disperse systems. Appl Phys Lett 82(19):3239–3241. doi: 10.1063/1.1576502 CrossRefGoogle Scholar
  60. Marangoni AG, Tang DM (2008) Modeling the rheological properties of fats: a perspective and recent advances. In. pp 113–119. doi: 10.1007/s11483-007-9049-0
  61. Margomenouleonidopoulou G (1994) Thermotropic mesophases of ionic amphiphiles. 2. Ionic amphiphiles in aqueous-media. J Therm Anal 42(5):1041–1061CrossRefGoogle Scholar
  62. Mazzanti G, Guthrie SE, Marangoni AG, Idziak SHJ (2007) A conceptual model for shear-induced phase behavior in crystallizing cocoa butter. Cryst Growth Des 7(7):1230–1241. doi: 10.1021/cg050457r CrossRefGoogle Scholar
  63. Mazzanti G, Guthrie SE, Sirota EB, Marangoni AG, Idziak SHJ (2003) Orientation and phase transitions of fat crystals under shear. Cryst Growth Des 3(5):721–725. doi: 10.1021/cg034048a CrossRefGoogle Scholar
  64. Mazzanti G, Guthrie SE, Sirota EB, Marangoni AG, Idziak SHJ (2004) Novel shear-induced phases in cocoa butter. Cryst Growth Des 4(3):409–411. doi: 10.1021/cg034260e CrossRefGoogle Scholar
  65. Mazzanti G, Marangoni AG, Idziak SHJ (2005) Modeling phase transitions during the crystallization of a multicomponent fat under shear. Phys Rev E 71(4):041607-1–041607-12. doi: 10.1103/PhysRevE.71.041607 CrossRefGoogle Scholar
  66. Mazzanti G, Mudge EM, Anom EY (2008) In situ Rheo-NMR measurements of solid fat content. J Amer Oil Chem Soc 85(5):405–412. doi: 10.1007/s11746-008-1227-9 CrossRefGoogle Scholar
  67. Meakin P (1987) Fractal aggregates. Adv Colloid Interf Sci 28:249–331CrossRefGoogle Scholar
  68. Mewis J (1979) Thixotropy—general review. J Non-Newtonian Fluid Mech 6(1):1–20CrossRefGoogle Scholar
  69. Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interf Sci 147–48:214–227. doi: 10.1016/j.cis.2008.09.005 CrossRefGoogle Scholar
  70. Miskandar MS, Man YBC, Rahman RA, Aini IN, Yusoff MSA (2004) Palm oil crystallization: effects of cooling time and oil content. J Food Lipids 11(3):190–207CrossRefGoogle Scholar
  71. Mohraz A, Solomon MJ (2006) Gelation and internal dynamics of colloidal rod aggregates. J Colloid Interface Sci 300(1):155–162. doi: 10.1016/j.jcis.2006.03.048 CrossRefGoogle Scholar
  72. Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Philos Trans R Soc A Math Phys Eng Sci 367(1909):5139–5155. doi: 10.1098/rsta.2009.0194 CrossRefGoogle Scholar
  73. Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283. doi: 10.1039/b517840a CrossRefGoogle Scholar
  74. Narine SS, Humphrey KL (2004a) A comparison of lipid shortening functionality as a function of molecular ensemble and shear: microstructure, polymorphism, solid fat content and texture. Food Res Int 37(1):28–38. doi: 10.1016/j.foodres.2003.09.013 CrossRefGoogle Scholar
  75. Narine SS, Humphrey KL (2004b) Extending the capability of pulsed NMR instruments to measure solid fat content as a function of both time and temperature. J Amer Oil Chem Soc 81(1):101–102CrossRefGoogle Scholar
  76. Narine SS, Marangoni AG (1999a) Fractal nature of fat crystal networks. Phys Rev E 59(2):1908–1920CrossRefGoogle Scholar
  77. Narine SS, Marangoni AG (1999b) Mechanical and structural model of fractal networks of fat crystals at low deformations. Phys Rev E 60(6):6991–7000CrossRefGoogle Scholar
  78. Narine SS, Marangoni AG (1999c) Microscopic and rheological studies of fat crystal networks. J Cryst Growth 198–199:1315–1319CrossRefGoogle Scholar
  79. Narine SS, Marangoni AG (1999d) Microscopic and rheological studies of fat crystal networks. J Cryst Growth 198:1315–1319CrossRefGoogle Scholar
  80. Narine SS, Marangoni AG (1999e) Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int 32(4):227–248CrossRefGoogle Scholar
  81. Narine SS, Marangoni AG (2001) Elastic modulus as an indicator of macroscopic hardness of fat crystal networks. Lebensm Wisss Technol Food Sci Technol 34(1):33–40CrossRefGoogle Scholar
  82. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52(2):649–676CrossRefGoogle Scholar
  83. Philipse AP, Wierenga AM (1998) On the density and structure formation in gels and clusters of colloidal rods and fibers. Langmuir 14(1):49–54CrossRefGoogle Scholar
  84. Piper SH, Malkin T, Austin HE (1926) An X-ray study of some structural modifications of long-chain compounds. J Chem Soc 1:2310–2318CrossRefGoogle Scholar
  85. Rønholt S, Kirkensgaard JJK, Pedersen TBk, Mortensen K, Knudsen JC (2012) Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment. Food Chem 135(3):1730–1739CrossRefGoogle Scholar
  86. Rye GG, Marangoni AG (2003) Cooling rate effects on solid fat content determination. J Amer Oil Chem Soc 80(8):835–836CrossRefGoogle Scholar
  87. Sato K, Ueno S (2011) Crystallization, transformation and microstructures of polymorphic fats in colloidal dispersion states. Curr Opin Colloid Interface Sci 16(5):384–390CrossRefGoogle Scholar
  88. Sein A, Verheij JA, Agterof WGM (2002) Rheological characterization, crystallization, and gelation behavior of monoglyceride gels. J Colloid Interface Sci 249(2): 412–422. doi:10.1006/jcis.2002.8287CrossRefGoogle Scholar
  89. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42(8):4772–4779CrossRefGoogle Scholar
  90. Solomon MJ, Boger DV (1998) The rheology of aqueous dispersions of spindle-type colloidal hematite rods. J Rheol 42(4):929–949CrossRefGoogle Scholar
  91. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7): 1391–1400. doi: 10.1039/b918281k CrossRefGoogle Scholar
  92. Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433(7024):392–395CrossRefGoogle Scholar
  93. Sonoda T, Takata Y, Ueno S, Sato K (2004) DSC and synchrotron-radiation X-ray diffraction studies on crystallization and polymorphic behavior of palm stearin in bulk and oil-in-water emulsion states. J Amer Oil Chem Soc 81(4):365–373CrossRefGoogle Scholar
  94. Stokes JR, Frith WJ (2008) Rheology of gelling and yielding soft matter systems. Soft Matter 4(6):1133–1140. doi: 10.1039/b719677f CrossRefGoogle Scholar
  95. Stokes JR, Telford JH (2004) Measuring the yield behaviour of structured fluids. J Non-Newtonian Fluid Mech 124(1–3):137–146. doi: 10.1016/j.jnnfm.2004.09.001 CrossRefGoogle Scholar
  96. Tang DM, Marangoni AG (2006a) Microstructure and fractal analysis of fat crystal networks. J Amer Oil Chem Soc 83(5):377–388CrossRefGoogle Scholar
  97. Tang DM, Marangoni AG (2006b) Quantitative study on the microstructure of colloidal fat crystal networks and fractal dimensions. Adv Colloid Interface Sci 128:257–265. doi: 10.1016/j.cis.2006.11.019 CrossRefGoogle Scholar
  98. Tang DM, Marangoni AG (2007) Modeling the rheological properties and structure of colloidal fat crystal networks (vol 18, p 474, 2007). Trends Food Sci Technol 19(1):53–53. doi: 10.1016/j.tifs.2007.08.004 CrossRefGoogle Scholar
  99. Tang DM, Marangoni AG (2008) Modified fractal model and rheological properties of colloidal networks. J Colloid Interface Sci 318(2):202–209. doi: 10.1016/j.jcis.2007.09.062 CrossRefGoogle Scholar
  100. Tang SK, Liu XY, Strom CS (2009) Producing supramolecular functional materials based on fiber network reconstruction. Adv Funct Mater 19(14):2252–2259. doi: 10.1002/adfm.200801590 CrossRefGoogle Scholar
  101. Thareja P, Street CB, Wagner NJ, Vethamuthu MS, Hermanson KD, Ananthapadmanabhan KP (2011) Development of an in situ rheological method to characterize fatty acid crystallization in complex fluids. Colloids Surf A Physicochem Eng Asp 388(1–3):12–20CrossRefGoogle Scholar
  102. van Duynhoven JPM, Broekmann I, Sein A, van Kempen GMP, Goudappel GJW, Veeman WS (2005) Microstructural investigation of monoglyceride-water coagel systems by NMR and CryoSEM. J Colloid Interface Sci 285(2):703–710. doi: 10.1016/j.jcis.2004.12.008 CrossRefGoogle Scholar
  103. Vandentempel M (1979) Rheology of concentrated suspensions. J Colloid Interface Sci 71(1):18–20CrossRefGoogle Scholar
  104. Vdtempel M (1961) Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Sci 16(3):284–296CrossRefGoogle Scholar
  105. Verma AR (1955) Interferometric and X-ray investigation of the growth of long-chain fatty acid crystals. 1. Polymorphism and polytypism in palmitic acid crystals. ProcR Soc Lond A Math Phys Sci 228(1172):34–50CrossRefGoogle Scholar
  106. Vreeker R, Hoekstra LL, den Boer DC, Agterof WGM (1992) The fractal nature of fat crystal networks. Colloids Surf 65(2–3):185–189CrossRefGoogle Scholar
  107. Wierenga A, Philipse AP, Lekkerkerker HNW, Boger DV (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14(1):55–65CrossRefGoogle Scholar
  108. Wilkins GMH, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25(16):8951–8959. doi: 10.1021/la9004196 CrossRefGoogle Scholar
  109. Wright AJ, Scanlon MG, Hartel RW, Marangoni AG (2001) Rheological properties of milkfat and butter. J Food Sci 66(8):1056–1071CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology (IIT) GandhinagarGujaratIndia

Personalised recommendations