Advertisement

Rheologica Acta

, Volume 52, Issue 5, pp 499–513 | Cite as

Shear thickening and shear-induced agglomeration of chemical mechanical polishing slurries using electrolytes

  • Nathan C. Crawford
  • Benjamin Yohe
  • S. Kim
  • R. Williams
  • David Boldridge
  • Matthew W. Liberatore
Original Contribution

Abstract

Chemical mechanical polishing is a fundamental technology used in the semiconductor manufacturing industry to polish and planarize a wide range of materials for the fabrication of microelectronic devices. During the high-shear (∼1,000,000 s−1) polishing process, it is hypothesized that individual slurry particles are driven together to form large agglomerates (≥0.5 µm). These agglomerates are believed to trigger a shear-induced thickening effect and cause defects during polishing. We examined how the addition of various monovalent salts (CsCl, KCl, LiCl, and NaCl) and electrostatic stabilizing bases (KOH, NaOH, or CsOH) influenced the slurry’s thickening behavior. Overall, as the added salt concentration was increased from 0.02 to 0.15 M, the shear rate at which the slurry thickened (i.e., the critical shear rate) decreased. Slurries with added CsCl, NaCl, and LiCl thickened at comparable shear rates (∼20,000–70,000 s−1) and, in general, followed ion hydration theory (poorly hydrated ions caused the slurry to thicken at lower shear rates). However, slurries with added KCl portrayed thickening behavior at higher critical shear rates (∼35,000–100,000 s−1) than other chloride salts. Also, slurries stabilized with CsOH thickened at higher shear rates (∼90,000–140,000 s−1), regardless of the added salt cation or concentration, than the slurries with KOH or NaOH. The NaOH-stabilized slurries displayed thickening at the lowest shear rates (∼20,000 s−1). The thickening dependence on slurry base cation indicates the existence of additional close-range structure forces that are not predicted by the Derjaguin–Landau–Verwey–Overbeek colloidal stability theory.

Keywords

Chemical mechanical polishing High shear Rheology Shear thickening Electrolyte Fumed silica  

Notes

Acknowledgments

The authors would like to thank the National Science Foundation (CBET-0968042 and DMR-0820518) for providing the funding for this work. Also, we acknowledge Cabot Microelectronics Corporation for supplying the slurries and for allowing us to share our findings.

References

  1. Allen LH, Matijevic E (1969) Stability of colloidal silica: i. Effect of simple electrolytes. J Colloid Interface Sci 31(3):287–296. doi: 10.1016/0021-9797(69)90172-6. ISSN 0021-9797CrossRefGoogle Scholar
  2. Amiri A, Oye G, Sjoblom J (2009) Influence of pH, high salinity and particle concentration on stability and rheological properties of aqueous suspensions of fumed silica. Colloids Surf A Physicochem Eng Asp 349(1–3):43–54.CrossRefGoogle Scholar
  3. Amiri A, Oye G, Sjoblom J (2012) Stability and flow-induced flocculation of fumed silica suspensions in mixture of water-glycerol. J Dispers Sci Technol 33(8):1247–1256. doi: 10.1080/01.9326912010.527811. ISSN 0193-2691CrossRefGoogle Scholar
  4. Barnes HA (1989) Shear thickening (dilatancy) in suspensions of non-aggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366CrossRefGoogle Scholar
  5. Basim GB, Moudgil BM (2002) Effect of soft agglomerates on CMP slurry performance. J Colloid Interface Sci 256:137–142CrossRefGoogle Scholar
  6. Beazley KM (1980) Industrial aqueous suspensions. Rheometry: industrial applications. Research Studies Press, ChichesterGoogle Scholar
  7. Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172(1):171–184CrossRefGoogle Scholar
  8. Bender JW, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40(5):899–916CrossRefGoogle Scholar
  9. Bertrand E, Bibette J, Schmittv V (2002) From shear thickening to shear-induced jamming. Phys Rev E 66(6 Part 1):060401. doi: 10.1103/PhysRevE.66.060401. ISSN 1539-3755CrossRefGoogle Scholar
  10. Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. Phys Chem Chem Phys 1(12):3007–3016. doi: 10.1039/a902209k. ISSN 1463-9076CrossRefGoogle Scholar
  11. Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChe J 36(3):321–332.CrossRefGoogle Scholar
  12. Boldridge D (2010) Morphological characterization of fumed silica aggregates. Aerosol Sci Technol 44:182–186.CrossRefGoogle Scholar
  13. Bossard F, Sfika V, Tsitsilianis C (2004) Rheological properties of physical gel formed by triblock polyampholyte in salt-free aqueous solutions. Macromolecules 37(10):3899–3904. doi: 10.1021/ma0353890. ISSN 0024-9297CrossRefGoogle Scholar
  14. Bossis G, Brady JF (1989) The rheology of brownian suspensions. J Chem Phys 91(3):1866–1874.CrossRefGoogle Scholar
  15. Brader, JM (2010) Nonlinear rheology of colloidal dispersions. J Phys Condens Matter 22(36):363101CrossRefGoogle Scholar
  16. Brady JF, Bossis G (1988) Stokesian dynamics. Ann Rev Fluid Mech 20:111–157CrossRefGoogle Scholar
  17. Brown E, Jaeger HM (2009) Dynamic jamming point for shear thickening suspensions. Phys Rev Lett 103(8):086001. doi: 10.1103/PhysRevLett.103.086001 ISSN 0031-9007CrossRefGoogle Scholar
  18. Brown E, Jaeger HM (2012) The role of dilation and confining stresses in shear thickening of dense suspensions. J Rheol 56(4):875–923. doi: 10.1122/1.4709423. ISSN 0148-6055CrossRefGoogle Scholar
  19. Cates ME, Wittmer JP, Bouchaud JP, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81(9):1841–1844. doi: 10.1103/PhysRevLett.81.1841. ISSN 0031-9007CrossRefGoogle Scholar
  20. Cates ME, Haw MD, Holmes CB (2005) Dilatancy, jamming, and the physics of granulation. J Phys Condens Matter 17(24, SI):S2517–S2531. doi: 10.1088/0953-8984/17/24/010 CrossRefGoogle Scholar
  21. Chang FC, Kumar P, Singh R, Balasundaram K, Lee J, Lee J, Singh RK (2011) Role of interparticle forces during stress-induced agglomeration of CMP slurries. Colloids Surf A Physicochem Eng Asp 389(1–3):33–37. doi: 10.1016/j.colsurfa.2011.09.001. ISSN 0927-7757CrossRefGoogle Scholar
  22. Chapel JP (1994) Electrolyte species-dependent hydration forces between silica surfaces. Langmuir 10(11):4237–4243. doi: 10.1021/la00023a053. ISSN 0743-7463CrossRefGoogle Scholar
  23. Chen S, Oye G, Sjoblom J (2007) Effect of pH and salt on rheological properties of Aerosil suspensions. J Dispers Sci Technol 28(6):845–853CrossRefGoogle Scholar
  24. Choi W, Mahajan U, Lee SM, Abiade J, Singh RK (2004) Effect of slurry ionic salts at dielectric silica CMP. J Electrochem Soc 151(3):G185–G189. doi: 10.1149/1.1644609. ISSN 0013-4651CrossRefGoogle Scholar
  25. Colic M, Fisher ML, Franks GV (1998) Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14(21):6107–6112. doi: 10.1021/la980489y. ISSN 0743-7463CrossRefGoogle Scholar
  26. Conway BE (1981) Ionic hydration in chemistry and biophysics. Elsevier, New YorkGoogle Scholar
  27. Crawford NC, Williams SKR, Boldridge D, Liberatore MW (2012) Shear thickening of chemical mechanical polishing slurries under high shear. Rheol Acta 51(7):637–647CrossRefGoogle Scholar
  28. Delhommelle J, Petravic J (2005) Shear thickening in a model colloidal suspension. J Chem Phys 123(7). doi: 10.1063/1.2007667. ISSN 0021-9606
  29. Depasse J (1997) Coagulation of colloidal silica by alkaline cations: surface dehydration or interparticle bridging? J Colloid Interface Sci 194(1):260–262. doi: 10.1006/jcis.1997.5120. ISSN 0021-9797CrossRefGoogle Scholar
  30. Depasse J, Watillon A (1970) The stability of amorphous colloidal silica. J Colloid Interface Sci 33(3):430–438. ISSN 0021-9797CrossRefGoogle Scholar
  31. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochimica URSS 14:663Google Scholar
  32. D’Haene P, Mewis J, Fuller GG (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156(2):350–358CrossRefGoogle Scholar
  33. Dukhin AS, Goetz PJ (1996) Acoustic and electroacoustic spectroscopy. Langmuir 12(18):4336–4344. doi: 10.1021/la951086q CrossRefGoogle Scholar
  34. Dukhin AS, Goetz PJ (1998) Characterization of aggregation phenomena by means of acoustic and electroacoustic spectroscopy. Colloids Surf A Physicochem Eng Asp 144(13):49–58. doi: 10.1016/S0927-7757(98)00565-2. ISSN 0927-7757CrossRefGoogle Scholar
  35. Dukhin AS, Goetz PJ (1999) Characterization of chemical polishing materials (monomodal and bimodal) by means of acoustic spectroscopy. Colloids Surf A Physicochem Eng Asp 158(3):343–354. doi: 10.1016/S0927-7757(99)00155-7. ISSN 0927-7757CrossRefGoogle Scholar
  36. Eastman J (2005) Colloid stability. Blackwell, OxfordGoogle Scholar
  37. Egres RG, Wagner NJ (2005) The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol 49(3):719–746. doi: 10.1122/1.1895800. ISSN 0148-6055CrossRefGoogle Scholar
  38. Fagan ME, Zukoski CF (1997) The rheology of charge stabilized silica suspensions. J Rheol 41(2):373–397. doi: 10.1122/1.550876. ISSN 0148-6055CrossRefGoogle Scholar
  39. Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D (2008) Shear thickening of cornstarch suspensions as a reentrant jamming transition. Phys Rev Lett 100(1):018301. doi: 10.1103/PhysRevLett.100.018301 ISSN 0031-9007CrossRefGoogle Scholar
  40. Feng YJ, Grassl B, Billon L, Khoukh A, Francois J (2002) Effects of NaCl on steady rheological behaviour in aqueous solutions of hydrophobically modified polyacrylamide and its partially hydrolyzed analogues prepared by post-modification. Polym Int 51(10):939–947. doi: 10.1002/pi.959. ISSN 0959-8103. Conference on polymers in the 3rd millennium, Montpellier, France, 2–6 September 2001CrossRefGoogle Scholar
  41. Franks GV (2002) Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J Colloid Interface Sci 249(1):44–51. doi: 10.1006/jcis.2002.8250. ISSN 0021-9797CrossRefGoogle Scholar
  42. Franks GV, Zhou Z, Duin NJ, Boger DV (2000) Effect of interparticle forces on shear thickening of oxide suspensions. J Rheol 44(4):759–779. doi: 10.1122/1.551111 CrossRefGoogle Scholar
  43. Gopalakrishnan V, Zukoski CF (2004) Effect of attractions on shear thickening in dense suspensions. J Rheol 48(6):1321–1344. doi: 10.1122/1.1784785 CrossRefGoogle Scholar
  44. Healy TW (1994) Stability of aqueous silica sols. In: Bergna HE, (ed) The colloid chemistry of silica. American Chemical Society, Washington, D.C. doi: 10.1021/ba-1994-0234.ch007
  45. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New YorkGoogle Scholar
  46. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. J Rheol 16(1):155–167CrossRefGoogle Scholar
  47. Holmes CB, Fuchs M, Cates ME (2003) Jamming transitions in a schematic model of suspension rheology. Europhys Lett 63(2):240–246. doi: 10.1209/epl/i2003-00465-1. ISSN 0295-5075CrossRefGoogle Scholar
  48. Holmes CB, Cates ME, Fuchs M, Sollich P (2005) Glass transitions and shear thickening suspension rheology. J Rheol 49(1):237–269. doi: 10.1122/1.1814114. ISSN 0148-6055CrossRefGoogle Scholar
  49. Horn RG (1990) Surface forces and their action in ceramic materials. J Am Ceram Soc 73(5):1117–1135. doi: 10.1111/j.1151-2916.1990.tb05168.x ISSN 0002-7820CrossRefGoogle Scholar
  50. Horn RG, Smith DT (1990) Measuring surface forces to explore surface chemistry: mica, sapphire, and silica. J Non-Cryst Solids 120(1–3):72–81. doi: 10.1016/0022-3093(90)90192-O. ISSN 0022-3093CrossRefGoogle Scholar
  51. Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162(4–5):404–408. doi: 10.1016/0009-2614(89)87066-6. ISSN 0009-2614CrossRefGoogle Scholar
  52. Iler RK (1979) The chemistry of silica, 3rd edn. Wiley, New YorkGoogle Scholar
  53. Israelachvili JN (1982) Forces between surfaces in liquids. Adv Colloid Interf Sci 16:31–47. doi: 10.1016/0001-8686(82)85004-5. ISSN 0001-8686CrossRefGoogle Scholar
  54. Israelachvili JN, Tabor D (1972) The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc R Soc Lond A 331(1584):19–38CrossRefGoogle Scholar
  55. Israelachvili JN, Wennerstrom H (1992) Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96(2):520–531. doi: 10.1021/j100181a007. ISSN 0022-3654CrossRefGoogle Scholar
  56. Johnson SB, Scales PJ, Healy TW (1999) The binding of monovalent electrolyte ions on α-alumina. I. Electroacoustic studies at high electrolyte concentrations. Langmuir 15(8):2836–2843. doi: 10.1021/la980875f CrossRefGoogle Scholar
  57. Johnson ACJH, Greenwood P, Hagstrom M, Abbas Z, Wall S (2008) Aggregation of nanosized colloidal silica in the presence of various alkali cations investigated by the electrospray technique. Langmuir 24(22):12798–12806. doi: 10.1021/la8026122. PMID: 18850727CrossRefGoogle Scholar
  58. Kaffashi B, O’Brien VT, Mackay ME, Underwood SM (1997) Elastic-like and viscous-like components of the shear viscosity for nearly hard sphere, Brownian suspensions. J Colloid Interface Sci 187(1):22–28CrossRefGoogle Scholar
  59. Kamibayashi M, Ogura H, Otsubo Y (2008) Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. J Colloid Interface Sci 321(2):294–301CrossRefGoogle Scholar
  60. Kjoniksen AL, Hiorth M, Nystrom B (2005) Association under shear flow in aqueous solutions of pectin. Eur Polym J 41(4):761–770. doi: 10.1016/j.eurpolymj.2004.11.006. ISSN 0014-3057CrossRefGoogle Scholar
  61. Kobayashi M, Juillerat F, Galletto P, Bowen P, Borkovec M (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21(13):5761–5769. doi: 10.1021/la046829z. PMID: 15952820CrossRefGoogle Scholar
  62. Kosmulski M (1998) Positive electrokinetic charge of silica in the presence of chlorides. J Colloid Interface Sci 208(2):543–545. doi: 10.1006/jcis.1998.5859. ISSN 0021-9797CrossRefGoogle Scholar
  63. Kosmulski M, Matijevic E (1992) Formation of the surface charge on silica in mixed solvents. Collied Polym Sci 270:1046–1048. doi: 10.1007/BF00655975. ISSN 0303-402XCrossRefGoogle Scholar
  64. Laun HM (1988) Rheological properties of polymer dispersions with respect to shear-induced particle structures. Progress and trends in rheology II. Steinkopff, Darmstadt, pp 287-290Google Scholar
  65. Laun HM, Bung R, Schmidt F (1991) Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids). J Rheol 35(6):999–1034CrossRefGoogle Scholar
  66. Laun HM, Bung R, Hess S, Loose W, Hess O, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P (1992) Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow. J Rheol 36(4):743–787CrossRefGoogle Scholar
  67. Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42(3):199–208Google Scholar
  68. Lee JD, So JH, Yang SM (1999) Rheological behavior and stability of concentrated silica suspensions. J Rheol 43(5):1117–1140. doi: 10.1122/1.551018 CrossRefGoogle Scholar
  69. Lootens D, Van Damme H, Hebraud P (2003) Giant stress fluctuations at the jamming transition. Phys Rev Lett 90(17). doi: 10.1103/PhysRevLett.90.178301. ISSN 0031-9007
  70. Lootens D, van Damme H, Hemar Y, Hebraud P (2005) Dilatant flow of concentrated suspensions of rough particles. Phys Rev Lett 95(26). doi: 10.1103/PhysRevLett.95.268302. ISSN 0031-9007
  71. Lortz W, Menzel F, Brandes R, Klaessig F, Knothe T, Shibasaki T (2003) News from the M in CMP—viscosity of CMP slurries, a constant? Mater Res Soc Symp Proc 767(1):F1.7.1–F1.7.10Google Scholar
  72. Maranzano BJ, Wagner NJ (2001a) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45(5):1205–1222. doi: 10.1122/1.1392295. ISSN 0148-6055CrossRefGoogle Scholar
  73. Maranzano BJ, Wagner NJ (2001b) The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114(23):10514–10527. doi: 10.1063/1.1373687 CrossRefGoogle Scholar
  74. Maranzano BJ, Wagner JN (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302CrossRefGoogle Scholar
  75. Marcelja S, Radic N (1976) Repulsion of interfaces due to boundary water. Chem Phys Lett 42(1):129–130CrossRefGoogle Scholar
  76. Matia-Merino L, Tha Goh KK, Singh H (2012) A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: influence of salt, pH and temperature. Carbohydr Polym 87(1):131–138. doi: 10.1016/j.carbpol.2011.07.027. ISSN 0144-8617CrossRefGoogle Scholar
  77. Matijevic E, Babu VS (2008) Colloid aspects of chemical-mechanical planarization. J Colloid Interface Sci 320:219–237CrossRefGoogle Scholar
  78. Melrose JR, Ball RC (2000) Proceedings of the XIIIth international congress of rheology, Vol. 2Google Scholar
  79. Melrose JR, Ball RC (2004) Contact networks in continuously shear thickening colloids. J Rheol 48(5):961–978. doi: 10.1122/1.1784784. ISSN 0148-6055CrossRefGoogle Scholar
  80. Moinpour M, Tregub A, Oehler A, Cadien K (2002) Advances in characterization of CMP consumables. MRS Bull 27(10):766–771CrossRefGoogle Scholar
  81. Molina-Bolivar JA, Ortega-Vinuesa JL (1999) How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15(8):2644–2653. doi: 10.1021/la981445s. ISSN 0743-7463CrossRefGoogle Scholar
  82. Molina-Bolivar JA, Galisteo-Gonzalez F, Hidalgo-Alvarez R (1999) The role played by hydration forces in the stability of protein-coated particles: non-classical DLVO behaviour. Colloids Surf B: Biointerfaces 14(1–4):3–17. doi: 10.1016/S0927-7765(99)00020-X. ISSN 0927-7765CrossRefGoogle Scholar
  83. Negi AS, Osuji CO (2009) New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions. Rheol Acta 48:871–881CrossRefGoogle Scholar
  84. O’Brien VT, Mackay ME (2000) Stress components and shear thickening of concentrated hard sphere suspensions. Langmuir 16(21):7931–7938CrossRefGoogle Scholar
  85. Osborne M (2011) Only 4.6 % growth expected for the semiconductor industry in 2011, says Gartner. www.fabtech.org/news/a/only_4.6_growth_expected_for_the_semiconductor_industry_in_2011_says_gartne/. Accessed 5 Jan 2011
  86. Osuji CO, Kim C, Weitz DA (2008) Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions. Phys Rev E77 (6):060402–1CrossRefGoogle Scholar
  87. Otsubo Y (1993) Size effects on the shear-thickening behavior of suspensions flocculated by polymer bridging. J Rheol 37(5):799–809. doi: 10.1122/1.550464. ISSN 0148-6055CrossRefGoogle Scholar
  88. Pashley RM (1981) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions—a correlation of double-layer and hydration forces with surface cation-exchange properties. J Colloid Interface Sci 83(2):531–546. doi: 10.1016/0021-9797(81)90348-9. ISSN 0021-9797CrossRefGoogle Scholar
  89. Pashley RM (1982) Hydration forces between mica surfaces in electrolyte solutions. Adv Colloid Interf Sci 16:57–62. doi: 10.1016/0001-8686(82)85006-9. ISSN 0001-8686CrossRefGoogle Scholar
  90. Pashley RM, Israelachvili JN (1984) DLVO and hydration forces between mica surfaces in Mg2+, Ca2+, Sr2+, Ba2+ chloride solutions. J Colloid Interface Sci 97(2):446–455. doi: 10.1016/0021-9797(84)90316-3. ISSN 0021-9797CrossRefGoogle Scholar
  91. Phung T, Brady JF (1992) Microstructured fluids, structure, diffusion and rheology of colloidal dispersions. AIP Conf Proc 256:391CrossRefGoogle Scholar
  92. Raghavan SR, Khan SA (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci 185(1):57–67. doi: 10.1006/jcis.1996.4581. ISSN 0021-9797CrossRefGoogle Scholar
  93. Raghavan S, Keswani M, Jia R (2008) Particulate science and technology in the engineering of slurries for chemical mechanical planarization. Kona Powder Part J 26:94–105Google Scholar
  94. Remsen EE, Anjur S, Boldridge D, Kamiti M, Li S, Johns T, Dowell C, Kasthurirangan J, Feeney P (2006) Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP. J Electrochem Soc 153(5):G453–G461CrossRefGoogle Scholar
  95. Sellitto M, Kurchan J (2005) Shear-thickening and entropy-driven reentrance. Physical Review Letters 95(23):236001. doi: 10.1103/Phys-RevLett.95.236001. ISSN 0031-9007CrossRefGoogle Scholar
  96. Singh RK, Lee SM, Choi KS, Basim GB, Chen Z, Moudgil BM (2002) Fundamentals of slurry design for CMP of metal and dielectric. MRS Bull 27(11):833. ISSN 0883-7694CrossRefGoogle Scholar
  97. Smith WE, Zukoski CF (2004) Flow properties of hard structured particle suspensions. J Rheol 48(6):1375–1388CrossRefGoogle Scholar
  98. Sonnefeld J, Gobel A, Vogelsberger W (1995) Surface charge density on spherical silica particles in aqueous alkali chloride solutions. Collied Polym Sci 273:926–931. doi: 10.1007/BF00.660369. ISSN 0303-402XCrossRefGoogle Scholar
  99. Tadros ThF, Lyklema J (1968) Adsorption of potential-determining ions at the silica-aqueous electrolyte interface and the role of some cations. J Electroanal Chem Interfacial Electrochem 17(34):267–275. doi: 10.1016/S0022-0728(68)80206-2. ISSN 0022-0728CrossRefGoogle Scholar
  100. Tan H, Tam KC, Jenkins RD (2000) Rheological properties of semidilute hydrophobically modified alkali-soluble emulsion polymers in sodium dodecyl sulfate and salt solutions. Langmuir 16(13):5600–5606. doi: 10.1021/la991691j. ISSN 0743-7463CrossRefGoogle Scholar
  101. Tikhonov AM (2007) Compact layer of alkali ions at the surface of colloidal silica. J Phys Chem C 111(2):930–937. doi: 10.1021/jp065538r. ISSN 1932-7447CrossRefGoogle Scholar
  102. Torrie GM, Kusalik PG, Patey GN (1989) Theory of the electrical double layer: ion size effects in a molecular solvent. J Chem Phys 91(10):6367–6375. doi: 10.1063/1.457404. ISSN 0021-9606CrossRefGoogle Scholar
  103. Trompette JL, Clifton MJ (2004) Influence of ionic specificity on the microstructure and the strength of gelled colloidal silica suspensions. J Colloid Interface Sci 276(2):475–482. doi: 10.1016/j.jcis.2004.03.040. ISSN 0021-9797CrossRefGoogle Scholar
  104. Verwey EG, Overbeek JThG (1948) Theory of the stability of lyophobic colloids. Elsevier, New YorkGoogle Scholar
  105. Vigil G, Xu Z, Steinberg S, Israelachvili J (1994) Interactions of silica surfaces. J Colloid Interface Sci 165(2):367–385. doi: 10.1006/jcis.1994.1242. ISSN 0021-9797CrossRefGoogle Scholar
  106. Wachter W, Fernandez S, Buchner R, Hefter G (2007) Ion association and hydration in aqueous solutions of LiCl and Li2SO4 by dielectric spectroscopy. J Phys Chem B 111(30):9010–9017. doi: 10.1021/jp072425e CrossRefGoogle Scholar
  107. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32CrossRefGoogle Scholar
  108. White EB, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49(2):119–129. doi: 10.1007/s00397-009-0415-3. ISSN 0035-4511CrossRefGoogle Scholar
  109. Yates DE, Healy TW (1976) The structure of the silica/electrolyte interface. J Colloid Interface Sci 55(1):9–19. doi: 10.1016/0021-9797(76)90003-5. ISSN 0021-9797. Papers presented at the 49th national colloid symposium, ClarksonCrossRefGoogle Scholar
  110. Yokoyama K, Koike Y, Masuda A, Kawaguchi M (2007) Rheological properties of fumed silica suspensions in the presence of potassium chloride. Japanese J Appl Phys Part 1-Reg Papers Brief Commun Rev Papers 46(1):328–332CrossRefGoogle Scholar
  111. Yotsumoto H, Yoon RH (1993a) Application of extended DLVO theory: i. Stability of rutile suspensions. J Colloid Interface Sci 157(2):426–433. doi: 10.1006/jcis.1993.1205. ISSN 0021-9797CrossRefGoogle Scholar
  112. Yotsumoto H, Yoon RH (1993b) Application of extended DLVO theory. ii. Stability of silica suspensions. J Colloid Interface Sci 157(2):434–441. doi: 10.1006/jcis.1993.1206. ISSN 0021-9797CrossRefGoogle Scholar
  113. Zebrowski J, Prasad V, Zhang W, Walker LM, Weitz DA (2003) Shake-gels: shear-induced gelation of laponite–PEO mixtures. Colloids Surf A Physicochem Eng Asp 213(2–3):189–197. doi: 10.1016/S0927-7757(02)00512-5. ISSN 0927-7757CrossRefGoogle Scholar
  114. Zhou Z, Scales PJ, Boger DV (2001) Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem Eng Sci 56(9):2901–2920. doi: 10.1016/S0009-2509(00)00473-5. ISSN 0009-2509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nathan C. Crawford
    • 1
  • Benjamin Yohe
    • 1
  • S. Kim
    • 2
  • R. Williams
    • 2
  • David Boldridge
    • 3
  • Matthew W. Liberatore
    • 1
  1. 1.Department of Chemical and Biological EngineeringColorado School of MinesGoldenUSA
  2. 2.Department of Chemistry and GeochemistryColorado School of MinesGoldenUSA
  3. 3.Cabot Microelectronics CorporationAuroraUSA

Personalised recommendations