Advertisement

Rheologica Acta

, Volume 52, Issue 8–9, pp 785–800 | Cite as

Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear

  • Andreas S. PoulosEmail author
  • Jörg Stellbrink
  • George Petekidis
Original Contribution

Abstract

The non-linear viscoelasticity of concentrated solutions and glasses of soft starlike micelles has been studied by large-amplitude oscillatory shear (LAOS). The non-linear response has been analysed using current schemes of Fourier transform (FT) rheology, and its character has been determined by the phase of the third harmonic contribution to the stress. The limitations of FT rheology and related analysis methods are discussed, and an alternative method is presented that takes into account all the higher harmonics. This method reveals a strain-hardening character of intracycle non-linearities at large strain amplitudes for all volume fractions. We also show that, although the relation of LAOS with steady shear measurements works qualitatively, due to inherent limitations of LAOS, steady shear data cannot be reproduced quantitatively.

Keywords

Non-linear viscoelasticity Colloids Large-amplitude oscillatory shear Yielding 

Notes

Acknowledgments

We thank Nikos Koumakis for the valuable discussions. We acknowledge Lutz Willner for the synthesis of the PEP-PEO block copolymer. This work has been supported by the EU funding through NoE ‘Softcomp’ and NMP SMALL ‘Nanodirect’. J.S. acknowledges DFG for the support via SFB-TR6 and EU project ‘ESMI Infrastructure FP7 - 262348’.

References

  1. Allgaier J, Poppe A, Willner L, Richter D (1997) Synthesis and characterization of poly[1,4-isoprene-b-(ethylene oxide)] and poly[ethylene-co-propylene-b-(ethylene oxide)] block copolymers. Macromolecules 30(6):1582–1586CrossRefGoogle Scholar
  2. Ballesta P, Besseling R, Isa L, Petekidis G, Poon WCK (2008) Slip and flow of hard-sphere colloidal glasses. Phys Rev Lett 101(25). doi: 10.1103/PhysRevLett.101.258301
  3. Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2012) Wall slip and flow of concentrated hard-sphere colloidal suspensions. J Rheol 5:1005–1037. doi: 10.1122/1.4719775 CrossRefGoogle Scholar
  4. Brader JM, Siebenbuerger M, Ballauff M, Reinheimer K, Wilhelm M, Frey SJ, Weysser F, Fuchs M (2010) Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and fourier transform rheology experiments. Phys Rev E 82(6, Part 1):061401. doi: 10.1103/PhysRevE.82.061401 CrossRefGoogle Scholar
  5. Brambilla G, El Masri D, Pierno M, Berthier L, Cipelletti L, Petekidis G, Schofield AB (2009) Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys Rev Lett 102:085703. doi: 10.1103/PhysRevLett.102.085703 CrossRefGoogle Scholar
  6. Carrier V, Petekidis G (2009) Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J Rheol 53(2):245–273. doi: 10.1122/1.3045803 CrossRefGoogle Scholar
  7. Cho K, Hyun K, Ahn K, Lee S (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758. doi: 10.1122/1.1895801 CrossRefGoogle Scholar
  8. Christopoulou C, Petekidis G, Erwin B, Cloitre M, Vlassopoulos D (2009) Ageing and yield behaviour in model soft colloidal glasses. Phil Trans R Soc A 367(1909):5051–5071. doi: 10.1098/rsta.2009.0166 CrossRefGoogle Scholar
  9. Cloitre M, Borrega R, Monti F, Leibler L (2003) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90(6):068303. doi: 10.1103/PhysRevLett.90.068303 CrossRefGoogle Scholar
  10. Craciun L, Carreau P, Heuzey MC, van de Ven T, Moan M (2003) Rheological properties of concentrated latex suspensions of poly(styrene-butadiene). Rheol Acta 42:410–420CrossRefGoogle Scholar
  11. Daniel C, Hamley I, Wilhelm M, Mingvanish W (2001) Non-linear rheology of a face-centred cubic phase in a diblock copolymer gel. Rheol Acta 40(1):39–48CrossRefGoogle Scholar
  12. Dealy J, Wissbrun K (1999) Melt rheology and its role in plastics processing: theory and applications, Kluwer, DordrechtGoogle Scholar
  13. Derec C, Ducouret G, Ajdari A, Lequeux F (2003) Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys Rev E 67(6, Part 1):061403. doi: 10.1103/PhysRevE.67.061403 CrossRefGoogle Scholar
  14. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox-Merz rule extended—a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685. doi: 10.1122/1.550184 CrossRefGoogle Scholar
  15. Ewoldt RH (2013) Defining nonlinear rheological material functions for oscillatory shear. J Rheol 57(1):177–195. doi: 10.1122/1.4764498 CrossRefGoogle Scholar
  16. Ewoldt RH, McKinley GH (2010) On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol Acta 49(2):213–219. doi: 10.1007/s00397-009-0408-2 CrossRefGoogle Scholar
  17. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458. doi: 10.1122/1.2970095 CrossRefGoogle Scholar
  18. Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49(2):191–212. doi: 10.1007/s00397-009-0403-7 CrossRefGoogle Scholar
  19. Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–814CrossRefGoogle Scholar
  20. Giacomin AJ, Bird RB, Johnson LM, Mix AW (2011) Large-amplitude oscillatory shear flow from the corotational Maxwell model. J Non-Newtonian Fluid Mech 166(19–20):1081–1099. doi: 10.1016/j.jnnfm.2011.04.002 CrossRefGoogle Scholar
  21. Helgeson ME, Wagner NJ, Vlassopoulos D (2007) Viscoelasticity and shear melting of colloidal star polymer glasses. J Rheol 51(2):297–316. doi: 10.1122/1.2433935 CrossRefGoogle Scholar
  22. Heymann L, Peukert S, Aksel N (2002) Investigation of the solid-liquid transition of highly concentrated suspensions in oscillatory amplitude sweeps. J Rheol 46(1):93–112CrossRefGoogle Scholar
  23. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH (2011) A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753CrossRefGoogle Scholar
  24. Hyun K, Kim W, Park SJ, Wilhelm M (2013) Numerical simulation results of the nonlinear coefficient Q from FT-rheology using a single mode pom-pom model. J Rheol 57(1):1–25. doi: 10.1122/1.4754444 CrossRefGoogle Scholar
  25. Kapnistos M, Vlassopoulos D, Fytas G, Mortensen K, Fleischer G, Roovers J (2000) Reversible thermal gelation in soft spheres. Phys Rev Lett 85(19):4072–4075CrossRefGoogle Scholar
  26. Koumakis N (2011) Mechanisms of yielding and flow in colloidal glasses, crystals and gels. PhD thesis, University of CreteGoogle Scholar
  27. Koumakis N, Petekidis G (2011) Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7(6):2456–2470. doi: 10.1039/c0sm00957a CrossRefGoogle Scholar
  28. Koumakis N, Laurati M, Egelhaaf SU, Brady JF, Petekidis G (2012a) Yielding of hard-sphere glasses during start-up shear. Phys Rev Lett 108:098303. doi: 10.1103/PhysRevLett.108.098303 CrossRefGoogle Scholar
  29. Koumakis N, Pamvouxoglou A, Poulos AS, Petekidis G (2012b) Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8:4271–4284. doi: 10.1039/C2SM07113D CrossRefGoogle Scholar
  30. Laeuger J, Stettin H (2010) Differences between stress and strain control in the non-linear behaviour of complex fluids. Rheol Acta 49(9):909–930. doi: 10.1007/s00397-010-0450-0 CrossRefGoogle Scholar
  31. Langela M, Wiesner U, Spiess H, Wilhelm M (2002) Microphase reorientation in block copolymer melts as detected via FT rheology and 2D SAXS. Macromolecules 35(8):3198–3204CrossRefGoogle Scholar
  32. Larson R (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  33. Laurati M, Stellbrink J, Lund R, Willner L , Richter D, Zaccarelli E (2005) Starlike micelles with starlike interactions: a quantitative evaluation of structure factors and phase diagram. Phys Rev Lett 94(19):195504. doi: 10.1103/PhysRevLett.94.195504 CrossRefGoogle Scholar
  34. Laurati M, Stellbrink J, Lund R, Willner L, Zaccarelli E, Richter D (2007) Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: a system with starlike morphology and interactions. Phys Rev E 76:041503. doi: 10.1103/PhysRevE.76.041503 CrossRefGoogle Scholar
  35. Laurati M, Egelhaaf SU, Petekidis G (2011) Nonlinear rheology of colloidal gels with intermediate volume fraction. J Rheol 55(3):673–706. doi: 10.1122/1.3571554 CrossRefGoogle Scholar
  36. Le Grand A, Petekidis G (2008) Effects of particle softness on the rheology and yielding of colloidal glasses. Rheol Acta 47(5–6):579–590. doi: 10.1007/s00397-007-0254-z CrossRefGoogle Scholar
  37. Liddel P, Boger D (1996) Yield stress measurements with the vane. J Non-Newtonian Fluid Mech 63(2–3):235–261CrossRefGoogle Scholar
  38. Lund R, Willner L, Stellbrink J, Lindner P, Richter D (2006) Logarithmic chain-exchange kinetics of diblock copolymer micelles. Phys Rev Lett 96(6):068302. doi: 10.1103/8PhysRevLett.96.068302 CrossRefGoogle Scholar
  39. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75(14):2770–2773. doi: 10.1103/PhysRevLett.75.2770 CrossRefGoogle Scholar
  40. Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 179(2):439–448. doi: 10.1006/jcis.1996.0235 CrossRefGoogle Scholar
  41. Mason T, Lacasse M, Grest G, Levine D, Bibette J, Weitz D (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56(3, Part B):3150–3166CrossRefGoogle Scholar
  42. Matsumoto T, Segawa Y, Warashina Y, Onogi S (1973) Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions. J Rheol 17:47CrossRefGoogle Scholar
  43. Mewis J, Meire C (1984) Yielding in weakly flocculated systems. In: Mena B, García-Rejón A, Rangel-Nafaille C (eds) Advances in rheology, vol 2. Elsevier, New YorkGoogle Scholar
  44. Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Non-Newtonian Fluid Mech 157(3, Sp. Iss. SI):147–150. doi: 10.1016/j.jnnfm.2008.11.004 CrossRefGoogle Scholar
  45. Miyazaki K, Wyss HM, Weitz DA, Reichman DR (2006) Nonlinear viscoelasticity of metastable complex fluids. Europhys Lett 75(6):915–921. doi: 10.1209/epl/i2006-10203-9 CrossRefGoogle Scholar
  46. Moller P, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283CrossRefGoogle Scholar
  47. Neidhofer T, Wilhelm M, Debbaut B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrenesolutions. J Rheol 47(6):1351–1371. doi: 10.1122/1.1608954 CrossRefGoogle Scholar
  48. Nicolai T, Benyahia L (2005) Shear flow and large strain oscillation of dense polymeric micelle suspension. Macromolecules 38(23):9794–9802. doi: 10.1021/ma0514267 CrossRefGoogle Scholar
  49. Onogi S, Matsumoto T (1981) Rheological properties of polymer solutions and melts containing suspended particles. Polym Eng Rev 1:45–87Google Scholar
  50. Onogi S, Masuda T, Matsumoto T (1970) Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. J Rheol 14:275CrossRefGoogle Scholar
  51. Ozon F, Petekidis G, Vlassopoulos D (2006) Signatures of nonergodicity transition in a soft colloidal system. Ind Eng Chem Res 45(21):6946–6952. doi: 10.1021/ie051373h CrossRefGoogle Scholar
  52. Petekidis G, Moussaid A, Pusey P (2002) Rearrangements in hard-sphere glasses under oscillatory shear strain. Phys Rev E 66(5):051402. doi: 10.1103/PhysRevE.66.051402 CrossRefGoogle Scholar
  53. Petekidis G, Vlassopoulos D, Pusey P (2003) Yielding and flow of colloidal glasses. Faraday Discuss 123:287–302. doi: 10.1039/b207343a CrossRefGoogle Scholar
  54. Petekidis G, Vlassopoulos D, Pusey PN (2004) Yielding and flow of sheared colloidal glasses. J Phys-Condens Mat 16:S3955CrossRefGoogle Scholar
  55. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK (2006) Yielding of colloidal glasses. Europhys Lett 75(4):624–630. doi: 10.1209/epl/i2006-10156-y CrossRefGoogle Scholar
  56. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Poon WCK, Pusey PN (2008) Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J Rheol 52:649CrossRefGoogle Scholar
  57. Philippoff W (1966) Vibrational measurements with large amplitudes. J Rheol 10: 317CrossRefGoogle Scholar
  58. Pusey P, Van Megen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59(18):2083–2086CrossRefGoogle Scholar
  59. Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). J Rheol 54:1219CrossRefGoogle Scholar
  60. Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. J Rheol 55(2):435–458CrossRefGoogle Scholar
  61. Schlatter G, Fleuary G, Muller R (2005) Fourier transform rheology of branched polyethylene: experiments and models for assessing the macromolecular architecture . Macromolecules 38(15):6492–6503. doi: 10.1021/ma0505530 CrossRefGoogle Scholar
  62. Shikata T, Pearson D (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616CrossRefGoogle Scholar
  63. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58(1):738–759CrossRefGoogle Scholar
  64. Stellbrink J, Rother G, Laurati M, Lund R, Willner L, Richter D (2004) Poly(ethylene-alt-propylene)-poly(ethylene oxide) diblock copolymer micelles: a colloidal model system with tunable softness. J Phys Condens Matter 16(38, Sp. Iss. SI):S3821–S3834. doi: 10.1088/0953-8984/16/38/004 CrossRefGoogle Scholar
  65. Stokes J, Telford J (2004) Measuring the yield behaviour of structured fluids. J Non-Newtonian Fluid Mech 124(1–3):137–146CrossRefGoogle Scholar
  66. van Megen W, Mortensen T, Williams S, Muller J (1998) Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys Rev E 58(5, Part B):6073–6085CrossRefGoogle Scholar
  67. Wilhelm M, Maring D, Spiess H (1998) Fourier-transform rheology. Rheol Acta 37(4):399–405CrossRefGoogle Scholar
  68. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38(4):349–356CrossRefGoogle Scholar
  69. Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess H (2000) The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology. Rheol Acta 39(3):241–246CrossRefGoogle Scholar
  70. Zausch J, Horbach J, Laurati M, Egelhaaf SU, Brader JM, Voigtmann T, Fuchs M (2008) From equilibrium to steady state: the transient dynamics of colloidal liquids under shear. J Phys Condens Matter 20(40):404210. doi: 10.1088/0953-8984/20/40/404210 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas S. Poulos
    • 1
    Email author
  • Jörg Stellbrink
    • 2
  • George Petekidis
    • 3
    • 1
  1. 1.Institute for Electronic Structure and LaserFoundation for Research and TechnologyHeraklionGreece
  2. 2.Forschungszentrum JülichJCNS-1JülichGermany
  3. 3.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece

Personalised recommendations