Rheologica Acta

, Volume 52, Issue 5, pp 425–443 | Cite as

Particle tracking in living cells: a review of the mean square displacement method and beyond

  • Naama Gal
  • Diana Lechtman-Goldstein
  • Daphne WeihsEmail author
Original Contribution


The focus of many particle tracking experiments in the last decade has been active systems, such as living cells. In active systems, the particles undergo simultaneous active and thermally driven transport. In contrast to thermally driven transport, particle motion driven by active processes cannot directly be correlated to the rheology of the probed region. The rheology in particle tracking experiments is typically obtained through the mean square displacements (MSD) of the trajectories. Hence, the MSD and its functional form remain the only basic tools to evaluate and compare living cells or other active systems. However, the mechano-structural characteristics of the intracellular environment and the mechanisms driving particle transport cannot be revealed by the MSD alone. Hence, approaches for advanced analysis of particle trajectories have been introduced recently. Here, we present a broad review of the extensive intracellular particle tracking experiments that have been carried out on a wide variety of cell types. Those works utilize the MSD, revealing similarities and differences relating to cell type and experimental setup. We also highlight several advanced trajectory-and displacement-based analysis methods and illustrate their capabilities using particle tracking data obtained from two cancer cell lines. We show that combining these analysis methods with the MSD can reveal additional information on intracellular structure and the existence and nature of active processes driving particle motion in cells.


Particle tracking Mean square displacement Trajectory analysis Intracellular mechanics 



The authors thank Rony Granek for the stimulating discussions. The work was partially funded by the Israeli Ministry of Science and Technology and the Eliyahu Pen Fund for Scientific and Medical Research.


  1. AbuHattum S, Weihs D (2013) Cell-based coordinate system for intracellular location-dependent particle tracking analysis. Comput Methods Biomech Biomed Eng. doi: 10.1080/10255842.2012.761694
  2. Andersen KH, Castiglione P, Mazzino A, Vulpiani A (2000) Simple stochastic models showing strong anomalous diffusion. Eur Phys J B 18:447–452CrossRefGoogle Scholar
  3. Arcizet D, Capito S, Gorelashvili M, Leonhardt C, Vollmer M, Youssef S, Rappl S, Heinrich D (2012) Contact-controlled amoeboid motility induces dynamic cell trapping in 3D-microstructured surfaces. Soft Matter 8:1473–1481. doi: 10.1039/C1sm05615h CrossRefGoogle Scholar
  4. Arcizet D, Meier B, Sackmann E, Radler JO, Heinrich D (2008) Temporal analysis of active and passive transport in living cells. Phys Rev Lett 101. doi: 10.1103/PhysRevLett.101.248103
  5. Asnacios A, Desprat N, Guiroy A (2006) Microplates-based rheometer for a single living cell. Rev Sci Instrum 77. doi: 10.1063/1.2202921
  6. Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2:715–725. doi: 10.1038/Nmat1001 CrossRefGoogle Scholar
  7. Bausch AR, Ziemann F, Boulbitch AA, Jacobson K, Sackmann E (1998) Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys J 75:2038–2049CrossRefGoogle Scholar
  8. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504CrossRefGoogle Scholar
  9. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  10. Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2008) Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys Rev Lett 100. doi: 10.1103/PhysRevLett.100.118104
  11. Brangwynne CP, Koenderink GH, Weitz DA, MacKintosh FC (2009) Intracellular transport by active diffusion. Trends Cell Biol 19:423–427. doi: 10.1016/j.tcb.2009.04.004 CrossRefGoogle Scholar
  12. Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E, Garini Y (2009) Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys Rev Lett 103:018102. doi: 10.1103/Physrevlett.103.018102 CrossRefGoogle Scholar
  13. Brown R (1828) On the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies. Edinburgh New Phil J:358–371Google Scholar
  14. Burnecki K, Kepten E, Janczura J, Bronshtein I, Garini Y, Weron A (2012) Universal algorithm for identification of fractional Brownian motion. A case of Telomere subdiffusion. Biophys J 103:1839–1847. doi: 10.1016/j.bpj.2012.09.040 CrossRefGoogle Scholar
  15. Burov S, Jeon JH, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13:1800–1812. doi: 10.1039/C0cp01879a CrossRefGoogle Scholar
  16. Bursac P, Lenormand G, Fabry B, Oliver M, Weitz DA, Viasnoff V, Butler JP, Fredberg JJ (2005) Cytoskeletal remodelling and slow dynamics in the living cell. Nat Mater 4:557–561. doi: 10.1038/Nmat1404 CrossRefGoogle Scholar
  17. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993. doi: 10.1016/j.biomaterials.2011.04.003 Google Scholar
  18. Caspi A, Granek R, Elbaum M (2000) Enhanced diffusion in active intracellular transport. Phys Rev Lett 85:5655–5658CrossRefGoogle Scholar
  19. Caspi A, Granek R, Elbaum M (2002) Diffusion and directed motion in cellular transport. Phys Rev E Stat Nonlinear Soft Matter Phys 66:011916CrossRefGoogle Scholar
  20. Castiglione P, Mazzino A, Muratore-Ginanneschi P, Vulpiani A (1999) On strong anomalous diffusion. Physica D 134:75–93CrossRefGoogle Scholar
  21. Chaudhuri O, Parekh SH, Lam WA, Fletcher DA (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6:383–U392. doi: 10.1038/Nmeth.1320 CrossRefGoogle Scholar
  22. Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388CrossRefGoogle Scholar
  23. Chen DTN, Wen Q, Janmey PA, Crocker JC, Yodh AG (2010) Rheology of soft materials. Annu Rev Cond Mat Phys 1:301–322. doi: 10.1146/annurev-conmatphys-070909-104120 Google Scholar
  24. Crick FHC, Hughes AFW (1950) The physical properties of cytoplasm—a study by means of the magnetic particle method .1. Experimental. Exp Cell Res 1:37–80. doi: 10.1016/0014-4827(50)90048-6 CrossRefGoogle Scholar
  25. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  26. Crocker JC, Hoffman BD (2007) Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol 83:141–178. doi: 10.1016/S0091-679X(07)83007-X CrossRefGoogle Scholar
  27. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891CrossRefGoogle Scholar
  28. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783. doi: 10.1038/nnano.2007.388 CrossRefGoogle Scholar
  29. Dangaria JH, Butler PJ (2007) Macrorheology and adaptive microrheology of endothelial cells subjected to fluid shear stress. Am J Physiol Cell Physiol 293:C1568–C1575. doi: 10.1152/ajpcell.00193.2007 CrossRefGoogle Scholar
  30. Daniels BR, Hale CM, Khatau SB, Kusuma S, Dobrowsky TM, Gerecht S, Wirtz D (2010) Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells. Biophys J 99:3563–3570. doi: 10.1016/j.bpj.2010.10.007 CrossRefGoogle Scholar
  31. Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 65. doi: 10.1103/PhysRevE.65.051505
  32. de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88:2137–2144. doi: 10.1529/biophysj.104.052035 CrossRefGoogle Scholar
  33. Discher D, Dong C, Fredberg JJ, Guilak F, Ingber D, Janmey P, Kamm RD, Schmid-Schonbein GW, Weinbaum S (2009) Biomechanics: Cell research and applications for the next decade. Ann Biomed Eng 37:847–859. doi: 10.1007/s10439-009-9661-x CrossRefGoogle Scholar
  34. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi: 10.1126/science.1116995 CrossRefGoogle Scholar
  35. Einstein A (1905) On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat. Annalen der Physik (Leipzig) 17:549–560CrossRefGoogle Scholar
  36. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi: 10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  37. Evans E, Ritchie K, Merkel R (1995) Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 68:2580–2587CrossRefGoogle Scholar
  38. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87. doi: 10.1103/PhysRevLett.87.148102
  39. Ferrari R, Manfroi AJ, Young WR (2001) Strongly and weakly self-similar diffusion. Physica D 154:111–137CrossRefGoogle Scholar
  40. Fletcher DA, Mullins D (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492CrossRefGoogle Scholar
  41. Freundlich H, Seifriz W (1923) On the elasticity of soles and gels. Z Phys Chem-Stoch Ve 104:233–261Google Scholar
  42. Gal N, Weihs D (2010) Experimental evidence of strong anomalous diffusion in living cells. Phys Rev E 81:020903(R). doi: 10.1103/PhysRevE.81.020903 CrossRefGoogle Scholar
  43. Gal N, Weihs D (2012) Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem Biophys 63:199–209. doi: 10.1007/s12013-012-9356-z CrossRefGoogle Scholar
  44. Gallet F, Arcizet D, Bohec P, Richert A (2009) Power spectrum of out-of-equilibrium forces in living cells: amplitude and frequency dependence. Soft Matter 5:2947–2953. doi: 10.1039/B901311c CrossRefGoogle Scholar
  45. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79:3286–3289CrossRefGoogle Scholar
  46. Golding I, Cox EC (2006) Physical nature of bacterial cytoplasm. Phys Rev Lett 96:098102. doi: 10.1103/Physrevlett.96.098102 CrossRefGoogle Scholar
  47. Granek R (1997) From semi-flexible polymers to membranes: Anomalous diffusion and reptation. J Phys Ii 7:1761–1788CrossRefGoogle Scholar
  48. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi: 10.1529/biophysj104.045476 CrossRefGoogle Scholar
  49. Guigas G, Kalla C, Weiss M (2007) Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys J 93:316–323. doi: 10.1529/biophysj.106.099267 CrossRefGoogle Scholar
  50. Guo Q, Park S, Ma HS (2012) Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip 12:2687–2695. doi: 10.1039/C2lc40205j CrossRefGoogle Scholar
  51. Head DA, Mizuno D (2010) Nonlocal fluctuation correlations in active gels. Phys Rev E 81:041910CrossRefGoogle Scholar
  52. Heidemann SR, Wirtz D (2004) Towards a regional approach to cell mechanics. Trends Cell Biol 14:160–166. doi: 10.1016/j.tcb.2004.02.003 CrossRefGoogle Scholar
  53. Heilbronn A (1922) Eine neue Methode zur Bestimmung der Viskosität lebender ProtoplastenGoogle Scholar
  54. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573. doi: 10.1038/Nrm2197 CrossRefGoogle Scholar
  55. Hiramoto Y (1969a) Mechanical properties of the protoplasm of the sea urchin egg. I. Unfertilized egg. Exp Cell Res 56:201–208CrossRefGoogle Scholar
  56. Hiramoto Y (1969b) Mechanical properties of the protoplasm of the sea urchin egg. II. Fertilized egg. Exp Cell Res 56:209–218CrossRefGoogle Scholar
  57. Hoffman BD, Massiera G, Van Citters KM, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103:10259–10264. doi: 10.1073/pnas.0510348103 CrossRefGoogle Scholar
  58. Hou HW, Li QS, Lee GYH, Kumar AP, Ong CN, Lim CT (2009) Deformability study of breast cancer cells using microfluidics. Biomed Microdevices 11:557–564. doi: 10.1007/s10544-008-9262-8 CrossRefGoogle Scholar
  59. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–E138CrossRefGoogle Scholar
  60. Indei T, Schieber JD, Cordoba A (2012a) Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Phys Rev E 85. doi: 10.1103/PhysRevE.85.041504
  61. Indei T, Schieber JD, Cordoba A, Pilyugina E (2012b) Treating inertia in passive microbead rheology. Phys Rev E 85. doi: 10.1103/PhysRevE.85.021504
  62. Janmey PA, Weitz DA (2004) Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 29:364–370. doi: 10.1016/j.tibs.2004.05.003 CrossRefGoogle Scholar
  63. Jeon JH, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sorensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106:048103. doi: 10.1103/Physrevlett.106.048103 CrossRefGoogle Scholar
  64. Kahana A, Kenan G, Feingold M, Elbaum M, Granek R (2008) Active transport on disordered microtubule networks: The generalized random velocity model. Phys Rev E Stat Nonlinear Soft Matter Phys 78:051912CrossRefGoogle Scholar
  65. King M, Macklem PT (1977) Rheological properties of microliter quantities of normal mucus. J Appl Physiol 42:797–802Google Scholar
  66. Kulic IM, Brown AE, Kim H, Kural C, Blehm B, Selvin PR, Nelson PC, Gelfand VI (2008) The role of microtubule movement in bidirectional organelle transport. Proc Natl Acad Sci USA 105:10011–10016. doi: 10.1073/pnas.0800031105 CrossRefGoogle Scholar
  67. Lau AWC, Hoffman BD, Davies A, Crocker JC, Lubensky TC (2003) Microrheology, stress fluctuations, and active behavior of living cells. Phys Rev Lett 91. doi: 10.1103/PhysRevLett.91.198101
  68. Leijnse N, Jeon JH, Loft S, Metzler R, Oddershede LB (2012) Diffusion inside living human cells. Eur Phys J-Spec Top 204:75–84. doi: 10.1140/epjst/e2012-01553-y CrossRefGoogle Scholar
  69. Leoncini X, Kuznetsov L, Zaslavsky GM (2004) Evidence of fractional transport in point vortex flow. Chaos Soliton Fract 19:259–273. doi: 10.1016/S0960-0779(03)00040-7 CrossRefGoogle Scholar
  70. Levine AJ, Lubensky TC (2000) One- and two-particle microrheology. Phys Rev Lett 85:1774–1777CrossRefGoogle Scholar
  71. Li YX, Vanapalli SA, Duits MHG (2009) Dynamics of ballistically injected latex particles in living human endothelial cells. Biorheology 46:309–321. doi: 10.3233/Bir-2009-0542 Google Scholar
  72. Lim CT, Zhou EH, Li A, Vedula SRK, Fu HX (2006) Experimental techniques for single cell and single molecule biomechanics. Mat Sci Eng C-Bio S 26:1278–1288. doi: 10.1016/j.msec.2005.08.022 CrossRefGoogle Scholar
  73. MacKintosh FC, Schmidt CF (1999) Microrheology. Curr Opin Colloid In 4:300–307. doi: 10.1016/S1359-0294(99)90010-9 CrossRefGoogle Scholar
  74. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378CrossRefGoogle Scholar
  75. Mason TG, Dhople A, Wirtz D (1997a) Concentrated DNA rheology and microrheology. MRS Proc Stat Mech Phys Biol 463:153–158CrossRefGoogle Scholar
  76. Mason TG, Ganesan K, vanZanten JH, Wirtz D, Kuo SC (1997b) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285CrossRefGoogle Scholar
  77. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253CrossRefGoogle Scholar
  78. Mizuno D, Tardin C, Schmidt CF, MacKintosh FC (2007) Nonequilibrium mechanics of active cytoskeletal networks. Science 315:370–373. doi: 10.1126/science.1134404 CrossRefGoogle Scholar
  79. Morse DC (1998) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules 31:7044–7067CrossRefGoogle Scholar
  80. Nagle RB (1994) A review of intermediate filament biology and their use in pathological diagnosis. Mol Biol Rep 19:3–21CrossRefGoogle Scholar
  81. Panorchan P, Lee JSH, Kole TP, Tseng Y, Wirtz D (2006) Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix. Biophys J 91:3499–3507. doi: 10.1529/biophysj.106.084988 CrossRefGoogle Scholar
  82. Pelling AE, Dawson DW, Carreon DM, Christiansen JJ, Shen RR, Teitell MA, Gimzewski JK (2007) Distinct contributions of microtubule subtypes to cell membrane shape and stability. Nanomed-Nanotechnol 3:43–52. doi: 10.1016/j.nano.2006.11.006 CrossRefGoogle Scholar
  83. Pikovsky AS (1991) Statistical properties of dynamically generated anomalous diffusion. Phys Rev A 43:3146–3148CrossRefGoogle Scholar
  84. Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212. doi: 10.1126/science.1175862 CrossRefGoogle Scholar
  85. Puig-de-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D (2001) Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol 91:1152–1159Google Scholar
  86. Qi D, Hoelzle DJ, Rowat AC (2012) Probing single cells using flow in microfluidic devices. Eur Phys J-Spec Top 204:85–101. doi: 10.1140/epjst/e2012-01554-x CrossRefGoogle Scholar
  87. Rahman A (1964) Correlations in the motion of atoms in liquid Argon. Phys Rev 136:A405–A411CrossRefGoogle Scholar
  88. Raupach C, Zitterbart DP, Mierke CT, Metzner C, Muller FA, Fabry B (2007) Stress fluctuations and motion of cytoskeletal-bound markers. Phys Rev E 76:011918. doi: 10.1103/PhysRevE.76.011918 CrossRefGoogle Scholar
  89. Rich JP, McKinley GH, Doyle PS (2011) Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. J Rheol 55:273–299. doi: 10.1122/1.3532979 CrossRefGoogle Scholar
  90. Robert D, Nguyen TH, Gallet F, Wilhelm C (2010) In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS ONE 5. doi: 10.1371/journal.pone.0010046
  91. Rogers SS, Waigh TA, Zhao XB, Lu JR (2007) Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys Biol 4:220–227. doi: 10.1088/1478-3975/4/3/008 CrossRefGoogle Scholar
  92. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  93. Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638. doi: 10.1529/biophysj.104.042457 CrossRefGoogle Scholar
  94. Saxton MJ (1993) Lateral diffusion in an archipelago—single-particle diffusion. Biophys J 64:1766–1780CrossRefGoogle Scholar
  95. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399CrossRefGoogle Scholar
  96. Schwoebel ED, Ho TH, Moore MS (2002) The mechanism of inhibition of Ran-dependent nuclear transport by cellular ATP depletion. J Cell Biol 157:963–974. doi: 10.1083/jcb.200111077 CrossRefGoogle Scholar
  97. Snider J, Lin F, Zahedi N, Rodionov V, Yu CC, Gross SP (2004) Intracellular actin-based transport: how far you go depends on how often you switch. Proc Natl Acad Sci USA 101:13204–13209. doi: 10.1073/pnas.0403092101 CrossRefGoogle Scholar
  98. Squires TM, Brady JF (2005) A simple paradigm for active and nonlinear microrheology. Phys Fluids 17. doi: 10.1063/1.1960607
  99. Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438. doi: 10.1146/annurev-fluid-121108-145608 CrossRefGoogle Scholar
  100. Stuhrmann B, Soares e Silva M, Depken M, MacKintosh FC, Koenderink GH (2012) Nonequilibrium fluctuations of a remodeling in vitro cytoskeleton. Phys Rev E 86:020901CrossRefGoogle Scholar
  101. Suh JH, Wirtz D, Hanes J (2004) Real-time intracellular transport of gene nanocarriers studied by multiple particle tracking. Biotechnol Prog 20:598–602. doi: 10.1021/bp034251y CrossRefGoogle Scholar
  102. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. doi: 10.1016/j.actbio.2007.04.002 CrossRefGoogle Scholar
  103. Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1:15–30. doi: 10.1016/j.actbio.2004.09.001 CrossRefGoogle Scholar
  104. Sutherland W (1905) A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Philos Mag 9:781–785CrossRefGoogle Scholar
  105. Tanase M, Biais N, Sheetz M (2007) Magnetic tweezers in cell biology. Method Cell Biol 83:473–493. doi: 10.1016/S0091-679x(07)83020-2 CrossRefGoogle Scholar
  106. Thoumine O, Ott A, Cardoso O, Meister JJ (1999) Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J Biochem Biophys Methods 39:47–62CrossRefGoogle Scholar
  107. Toyota T, Head DA, Schmidt CF, Mizuno D (2011) Non-Gaussian athermal fluctuations in active gels. Soft Matter 7:3234–3239. doi: 10.1039/C0sm00925c CrossRefGoogle Scholar
  108. Tseng Y, Kole TP, Wirtz D (2002) Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys J 83:3162–3176CrossRefGoogle Scholar
  109. Tseng Y, Lee JSH, Kole TP, Jiang I, Wirtz D (2004) Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J Cell Sci 117:2159–2167. doi: 10.1242/jcs.01073 CrossRefGoogle Scholar
  110. Umansky M, Weihs D (2012) Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement. Comput Phys Commun 183:1783–1792. doi: 10.1016/j.cpc.2012.03.001 CrossRefGoogle Scholar
  111. Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys Rev E 64:061506. doi: 10.1103/Physreve.64.061506 CrossRefGoogle Scholar
  112. Valiron O, Caudron N, Job D (2001) Microtubule dynamics. Cell Mol Life Sci 58:2069–2084CrossRefGoogle Scholar
  113. Van Citters KM, Hoffman BD, Massiera G, Crocker JC (2006) The role of F-actin and myosin in epithelial cell rheology. Biophys J 91:3946–3956. doi: 10.1529/biophysj.106.091264 CrossRefGoogle Scholar
  114. Van Hove L (1954) Correlations in space and time and born approximation scattering in systems of interacting particles. Physical Review 95:249–262CrossRefGoogle Scholar
  115. Van Vliet KJ, Bao G, Suresh S (2003) The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 51:5881–5905. doi: 10.1016/j.actamat.2003.09.001 CrossRefGoogle Scholar
  116. Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104:238102. doi: 10.1103/Physrevlett.104.238102 CrossRefGoogle Scholar
  117. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287:627–631CrossRefGoogle Scholar
  118. Weihs D, Gilad D, Seon M, Cohen I (2012) Image-based algorithm for analysis of transient trapping in single-particle trajectories. Microfluid Nanofluid 12:337–344. doi: 10.1007/s10404-011-0877-3 CrossRefGoogle Scholar
  119. Weihs D, Mason TG, Teitell MA (2006) Bio-microrheology: a frontier in microrheology. Biophys J 91:4296–4305. doi: 10.1529/biophysj.106.081109 CrossRefGoogle Scholar
  120. Weihs D, Mason TG, Teitell MA (2007a) Effects of cytoskeletal disruption on transport, structure, and rheology within mammalian cells. Phys Fluids 19. doi: 10.1063/1.2795130
  121. Weihs D, Teitell MA, Mason TG (2007b) Simulations of complex particle transport in heterogeneous active liquids. Microfluid Nanofluid 3:227–237. doi: 10.1007/s10404-006-0117-4 CrossRefGoogle Scholar
  122. Weiss M, Elsner M, Kartberg F, Nilsson T (2004) Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys J 87:3518–3524. doi: 10.1529/biophysj.104.044263 CrossRefGoogle Scholar
  123. Wilhelm C (2008) Out-of-equilibrium microrheology inside living cells. Phys Rev Lett 101:028101. doi: 10.1103/Physrevlett.101.028101 CrossRefGoogle Scholar
  124. Willenbacher N, Oelschlaeger C, Schopferer M, Fischer P, Cardinaux F, Scheffold F (2007) Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys Rev Lett 99. doi: 10.1103/Physrevlett.99.068302
  125. Xu JY, Viasnoff V, Wirtz D (1998) Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheol Acta 37:387–398CrossRefGoogle Scholar
  126. Yagi K (1961) The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp Biochem Physiol 3:73–91CrossRefGoogle Scholar
  127. Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747CrossRefGoogle Scholar
  128. Yizraeli ML, Weihs D (2011) Time-dependent micromechanical responses of breast cancer cells and adjacent fibroblasts to electric treatment. Cell Biochem Biophys 61:605–618. doi: 10.1007/s12013-011-9244-y CrossRefGoogle Scholar
  129. Zemel A, Rehfeldt F, Brown AEX, Discher DE, Safran SA (2010) Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6:468–473. doi: 10.1038/Nphys1613 CrossRefGoogle Scholar
  130. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690. doi: 10.1098/rsif.2008.0052 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Naama Gal
    • 1
  • Diana Lechtman-Goldstein
    • 1
  • Daphne Weihs
    • 1
    Email author
  1. 1.Faculty of Biomedical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations