Advertisement

Rheologica Acta

, Volume 52, Issue 1, pp 1–21 | Cite as

Self-organized domain microstructures in a plate-like particle suspension subjected to rapid simple shear

  • Hiroshi KawabataEmail author
  • Daisuke Nishiura
  • Hide Sakaguchi
  • Yoshiyuki Tatsumi
Original Contribution

Abstract

The evolution of the microstructure and rheological properties of plate-like particle suspensions subjected to rapid simple shear is studied numerically. In response to the shear-induced strain, particles in the suspensions rearrange to form a steady-state microstructure, and the suspension viscosity reaches a steady value. Under this condition, the microstructure is composed of two domains having different particle fractions and particle orientations. In the matrix (particle-poor) and cluster (particle-rich) domains, the particles’ long axes are oriented subparallel to the shear plane and normal to the maximum compressive principal direction, respectively. A higher particle concentration and friction coefficient enhance the development of cluster domains relative to matrix domains leading the intensity of the preferred particle orientation to decrease and the number of contacting particles, the aspect ratio of clusters, the inter-particle force, and the suspension viscosity to increase. The domain microstructure is governed by two factors: (1) geometric relations between the particle orientation and the maximum compressive axes and (2) the magnitude of particle–fluid and particle–particle interactions. The first factor results in the coupling of the particle orientation and the local fraction of particles, which is an important character of the domain microstructure. The second factor controls the relative development of the cluster and matrix domains through the change in the particles’ rotational behavior. Our results suggest that the microstructure of plate-like suspensions subjected to rapid shear is predictable in terms of the cluster stability, which has important implications for the kinematics of flow-related microstructures in nature and manufacturing.

Keywords

Contact force Hydrocluster Microstructure Force chain Simple shear Columnar phase 

Notes

Acknowledgments

We are grateful to Hiroaki Ohfuji for useful suggestions on this study. This work was supported by JSPS KAKENHI Grant Numbers 20740310 (Grant-in-Aid for Young Scientists (B) to H. K.). Constructive reviews by anonymous reviewers and editor Henning Winter improved the quality of this paper and were much appreciated.

Supplementary material

397_2012_657_MOESM1_ESM.mpg (5.4 mb)
(MPG 5.42 MB)

References

  1. Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds. Ind Eng Chem Fundam 6:527CrossRefGoogle Scholar
  2. Arbaret L, Diot H, Bouchez J-L (1996) Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma. J Struct Geol 18:941CrossRefGoogle Scholar
  3. Arbaret L, Diot H, Bouchez JL, Lespinasse P, Saint-Blanquat MD (1997) Analogue 3D simple-shear experiments of magmatic biotite subfabrics. Granites: from segregation of melt to emplacement fabric. Kluwer Academic, Dordrecht, p 129Google Scholar
  4. Arbaret L, Fernandez A, Ježek J, Ildefonse B, Launeau P, Diot H (2000) Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas. Geol S Am 350:97. doi: 10.1130/0-8137-2350-7.97 Google Scholar
  5. Bell JB, Colella P, Glaz HM (1989) A second order projection method for the incompressible Navier-Stokes equations. J Comput Phys 85:257CrossRefGoogle Scholar
  6. Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91:1866CrossRefGoogle Scholar
  7. Brown ABD, Clarke SM, Convert P, Rennie AR (2000) Orientational order in concentrated dispersions of plate-like kaolinite particles under shear. J Rheol 44:221CrossRefGoogle Scholar
  8. Brown ABD, Rennie AR (2000) Monodisperse colloidal plates under shear. Phys Rev E 62:851CrossRefGoogle Scholar
  9. Chu KW, Wang B, Yu AB, Vince A (2009) CFD-DEM modeling of multiphase flow in dense medium cyclones. Powder Technol 193:235CrossRefGoogle Scholar
  10. Corwin EI, Jaeger HM, Nagel SR (2005) Structural signature of jamming in granular media. Nature 435:1075CrossRefGoogle Scholar
  11. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47CrossRefGoogle Scholar
  12. Dong KJ, Guo BY, Chu KW, Yu AB, Brake I (2008) Simulations of liquid-solid flow in a coal distributor. Miner Eng 21:789CrossRefGoogle Scholar
  13. Ergun S (1952) Fluid flow through packed columns. Chem Engng Prog 48:89Google Scholar
  14. Estrada N, Taboada A, Radjaï F (2008) Shear strength and force transmission in granular media with rolling resistance. Phys Rev E 78:021301CrossRefGoogle Scholar
  15. Fernandez A, Fernandez-Catuxo J (1997) 3D biotite shape fabric experiments under simple shear strain. Granite: From segregation of melt to emplacement fabrics. Kluwer Academic, Dordrecht, p 145Google Scholar
  16. Fernandez A, Feybesse JL, Mezure JF (1983) Theoretical and experimental study of fabric developed by different shaped markers in two-dimensional simple shear. Bull Soc Géol Fr 25:319Google Scholar
  17. Ghosh SK, Ramberg H (1976) Reorientation of inclusions by combination of pure shear and simple shear. Tectonophysics 34:1CrossRefGoogle Scholar
  18. Ildefonse B, Arbaret L, Diot H (1997) Rigid particles in simple shear flow: is there preferred orientation periodic or steady-state? Granite: from segregation of melt to emplacement fabrics. Kluwer Academic, Dordrecht, p 177Google Scholar
  19. Ildefonse B, Mancktelow NS (1993) Deformation around rigid particles: the influence of slip at the particle/matrix interface. Tectonophysics 221:345CrossRefGoogle Scholar
  20. Ildefonse B, Launeau P, Bouchez J-L, Fernandez A (1992a) Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach. J Struct Geol 14:73CrossRefGoogle Scholar
  21. Ildefonse B, Sokoutis D, Mancktelow NS (1992b) Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow. J Struct Geol 14:1253CrossRefGoogle Scholar
  22. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. P Roy Soc London Series A 102:161. doi: 10.1098/rspa.1922.0078 CrossRefGoogle Scholar
  23. Jogun SM, Zukoski CF (1999) Rheology and microstructure of dense suspensions of plate-shaped colloidal particles. J Rheol 43:847. doi: 10.1122/1.551013 CrossRefGoogle Scholar
  24. Johnson SE, Lenferink HJ, Price NA, Marsh JH, Koons PO, West Jr DP, Beane R (2009) Clast-based kinematic vorticity gauges: the effects of slip at matrix/clast interfaces. J Struct Geol 31:1322CrossRefGoogle Scholar
  25. Kawaguchi T, Tanaka T, Tsuji Y (1998) Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technol 96:129CrossRefGoogle Scholar
  26. Kulkarni PM, Morris JF (2008) Pair-sphere trajectories in finite-Reynolds-number shear flow. J Fluid Mech 596:413–435CrossRefGoogle Scholar
  27. Majmudar TS, Behringer RP (2005) Contact force measurements and stress-induced anisotropy in granular materials. Nature 435:1079CrossRefGoogle Scholar
  28. Mandal N, Kumar Samanta S, Bhattacharyya G, Chakraborty C (2005) Rotation behaviour of rigid inclusions in multiple association: insights from experimental and theoretical models. J Struct Geol 27:679CrossRefGoogle Scholar
  29. Marechal M, Cuetos A, Martínez-Haya B, Dijkstra M (2011) Phase behavior of hard colloidal platelets using free energy calculations. J Chem Phys 134:094501. doi: 10.1063/1.3552951 CrossRefGoogle Scholar
  30. Marques FO, Coelho S (2001) Rotation of rigid elliptical cylinders in viscous simple shear flow: analogue experiments. J Struct Geol 23:609CrossRefGoogle Scholar
  31. Marques FO, Taborda R, Bose S, Antunes J (2005) Effects of confinement on matrix flow around a rigid inclusion in viscous simple shear: insights from analogue and numerical modelling. J Struct Geol 27:379CrossRefGoogle Scholar
  32. Marthys NS (2005) Study of a dissipative particle dynamics based approach for modeling suspensions. J Rheol 49:401CrossRefGoogle Scholar
  33. Melrose JR, Ball RC (2004) Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces. J Rheol 48:937CrossRefGoogle Scholar
  34. Meng Q, Higdon JL (2008a) Large scale dynamic simulation of plate-like particle suspensions. Part I: non-Brownian simulation. J Rheol 52:1CrossRefGoogle Scholar
  35. Meng Q, Higdon JL (2008b) Large scale dynamic simulation of plate-like particle suspensions. Part II: Brownian simulation. J Rheol 52:37CrossRefGoogle Scholar
  36. Moan M, Aubry T, Bossard F (2003) Nonlinear behavior of very concentrated suspensions of plate-like kaolin particles in shear flow. J Rheol 47:1493CrossRefGoogle Scholar
  37. Morris J (2009) A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta 48:909CrossRefGoogle Scholar
  38. Mulchrone KF, Grogan S, De P (2005) The relationship between magmatic tiling, fluid flow and crystal fraction. J Struct Geol 27:179CrossRefGoogle Scholar
  39. Parsi F, Gadala-Maria F (1987) Fore-and aft symmetry in a concentrated suspension of solid spheres. J Rheol 31:725CrossRefGoogle Scholar
  40. Qi D, Luo L (2002) Transitions in rotations of a nonspherical particle in a three dimensional moderate Reynolds number Couette flow. Phys Fluids 14:4440CrossRefGoogle Scholar
  41. Rampall I, Smart JR, Leighton DT (1997) The influence of roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J Fluid Mech 399:1CrossRefGoogle Scholar
  42. Ramsay JDF, Lindner P (1993) Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. J Chem Soc. Faraday Trans 89:4207CrossRefGoogle Scholar
  43. Saar MO, Manga M, Cashman KV, Fremouw S (2001) Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet Sci Lett 187:367CrossRefGoogle Scholar
  44. Smith JV (1998) Interpretation of domainal groundmass textures in basalt lavas of the southern Lamington Volcanics, eastern Australia. J Geophys Res 103:27383. doi: 10.1029/97jb03109 CrossRefGoogle Scholar
  45. Tabatabaian M, Cox RG (1991) Effect of contact forces on sedimenting spheres in Stokes flows. Int J Multiph Flow 17:395CrossRefGoogle Scholar
  46. Tordesillas A, Zhang J, Behringer R (2009) Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech Geoeng 4:3. doi: 10.1080/17486020902767347 CrossRefGoogle Scholar
  47. Tsuji Y, Kawagushi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Power Technol 77:79CrossRefGoogle Scholar
  48. van Der Kooij FM, Kassapidou K, Lekkerkerker HNW (2000) Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406:868CrossRefGoogle Scholar
  49. van Der Kooij FM, Lekkerkerker HNW (2001) Liquid-crystal phase transitions in suspensions of plate-like particles. Philos Trans - Royal Soc, Math Phys Eng Sci 359:985. doi: 10.1098/rsta.2001.0813 CrossRefGoogle Scholar
  50. Veerman JA, Frenkel D (1992) Phase behavior of disklike hard-core mesogens. Phys Rev A 45:5632CrossRefGoogle Scholar
  51. Ventura G, De Rosa R, Colletta E, Mazzuoli R (1996) Deformation patterns in a high-viscosity lava flow inferred from the crystal preferred orientation and imbrication structures: an example from Salina (Aeolian Islands, southern Tyrrhenian Sea, Italy). B Volcanol 57:555Google Scholar
  52. Vermant J, Solomon MJ (2005) Flow-induced structure in colloidal suspensions. J Phys, Condens Matter, p 17. doi: 10.1088/0953-8984/17/4/R02
  53. Wada K, Senshu H, Matsui T (2006) Numerical simulation of impact cratering on granular material. Icarus 180:528CrossRefGoogle Scholar
  54. Wang S, Guo S, Gao J, Lan X, Dong Q, Li X (2012) Simulation of flow behavior of liquid and particles in a liquid–solid fluidized bed. Powder Technol 224:365CrossRefGoogle Scholar
  55. Wen CY, Yu YH (1966) Mechanics of Fluidization. Chem Engng Prog Symp Ser 62:100Google Scholar
  56. Willis DG (1977) A kinematic model of preferred orientation. Geol Soc Am Bull 88:883CrossRefGoogle Scholar
  57. Yamamoto S, Matsuoka T (1997) Dynamic simulation of a platelike particle dispersed system. J Chem Phys 107:3300CrossRefGoogle Scholar
  58. Zhang W, Noda R, Horio M (2005) Evaluation of lubrication force on colliding particles for DEM simulation of fluidized beds. Powder Technol 158:92CrossRefGoogle Scholar
  59. Zeng S, Kerns ET, Davis RH (1996) The nature of particle contacts in sedimentation. Phys Fluid 8:1389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hiroshi Kawabata
    • 1
    Email author
  • Daisuke Nishiura
    • 2
  • Hide Sakaguchi
    • 2
  • Yoshiyuki Tatsumi
    • 3
  1. 1.Institute for Research on Earth Evolution (IFREE)Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  2. 2.Institute for Research on Earth Evolution (IFREE)Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan
  3. 3.Department of Earth and Planetary Sciences, Faculty of ScienceKobe UniversityNada KobeJapan

Personalised recommendations