Rheologica Acta

, Volume 51, Issue 5, pp 385–394 | Cite as

Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow

  • Ole Hassager
  • Kell Mortensen
  • Anders Bach
  • Kristoffer Almdal
  • Henrik Koblitz Rasmussen
  • Wim Pyckhout-Hintzen
Original Contribution


We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the steady stretch rate to a power of about 0.25. This value is about half of the exponent observed for the increase in stress value σ, in agreement with Gaussian behavior. Thus, finite chain extensibility does not seem to play an important role in the strongly non-linear extensional stress behavior exhibited by the linear polystyrene melt.


Scattering Polymer melt Uniaxial extension Polystyrene 


  1. Bach A, Almdal K, Rasmussen H, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179CrossRefGoogle Scholar
  2. Bach A, Rasmussen H, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441CrossRefGoogle Scholar
  3. Baumgaertel M, Schausberger A, Winter H (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29(5):400–408CrossRefGoogle Scholar
  4. Bent J, Hutchings L, Richards R, Gough T, Spares R, Coates P, Grillo I, Harlen O, Read D, Graham R, Likhtman A, Groves D, Nicholson T, McLeish TCB (2003) Neutron-mapping polymer flow: scattering, flow visualization, and molecular theory. Science 301:1691–1695CrossRefGoogle Scholar
  5. Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of polymer liquids: fluid mechanics, vol 1, 2 edn. Wiley, New YorkGoogle Scholar
  6. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987b) Dynamics of polymer liquids: kinetic theory, vol 2, 2 edn. Wiley, New YorkGoogle Scholar
  7. Blanchard A, Graham RS, Heinrich M, Pyckhout-Hintzen W, Richter D, Likhtman AE, McLeish T, Read D, Straube E, Kohlbrecher J (2005) Small angle neutron scattering observation of chain retraction after a large step deformation. Phys Rev Lett 95:166001CrossRefGoogle Scholar
  8. Boué F, Bastide J, Buzier M, Lapp A, Herz J, Vilgis TA (1991) Strain-induced large fluctuations during stress relaxation in polymer melts observed by small-angle neutron scattering. Lozenges, butterflies, and related theory. Colloid Polym Sci 269:195–216CrossRefGoogle Scholar
  9. Boué F, Nierlich M, Jannink G, Ball R (1982) Polymer coil relaxation in uniaxially strained polystyrene observed by small angle neutron scattering. J Phys 43:137–148CrossRefGoogle Scholar
  10. Boué F, Nierlich M, Osaki K (1983) Dynamics of molten polymers on the sub-molecular scale—application of small-angle-neutron-scattering to transient relaxation. Symp Faraday Soc 18:83–105CrossRefGoogle Scholar
  11. De Gennes P (1974) Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60:5030–5042CrossRefGoogle Scholar
  12. Doi M (1992) Introduction to polymer physics. Oxford University Press, OxfordGoogle Scholar
  13. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  14. Fang J, Kröger M, Öttinger HC (2000) A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. J Rheol 44:1293–1317CrossRefGoogle Scholar
  15. Fetters LJ, Lohse DJ, Colby RH (2009) Physical properties of polymers handbook. Springer, BerlinGoogle Scholar
  16. Hayes C, Bokobza L, Boué F, Mendes E, Monneri L (1996) Relaxation dynamics in bimodal polystyrene melts: a fourier-transform infrared dichroism and small-angle neutron scattering study. Macromolecules 29:5036–5041CrossRefGoogle Scholar
  17. Jackson JK, Winter HH (1995) Entanglement and flow behavior of bidisperse blends of polystyrene and polybutadiene. Macromolecules 28:3146–3155CrossRefGoogle Scholar
  18. Kabanemi K, Hétu J-F (2009) Dynamics of monodisperse linear entangled polymer melts in extensional flow: the effect of excluded-volume interactions. Polymer 50:5865–5870CrossRefGoogle Scholar
  19. Likhtman A, McLeish T, (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343CrossRefGoogle Scholar
  20. Likhtman AE, Graham RS (2003) Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie–Poly equation. J Non-Newton Fluid Mech 114:1–12CrossRefGoogle Scholar
  21. Luap C, Muller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91CrossRefGoogle Scholar
  22. Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942CrossRefGoogle Scholar
  23. Marrucci G, Grizzutti N (1988) Fast flows of concentrated polymers: predictions of the tube model on chain stretching. Gazz Chim Ital 118:179–185Google Scholar
  24. Maschke U, Ewen B, Benmouna M, Meier G, Benoit H (1993) Elastic coherent neutron scattering from mixtures of triblock copolymers and homopolymers in the homogeneous bulk state. Macromolecules 26:6197–6202CrossRefGoogle Scholar
  25. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415CrossRefGoogle Scholar
  26. Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914CrossRefGoogle Scholar
  27. Muller R, Picot C, Zang Y, Frolich D (1990) Polymer chain conformation in the melt during steady elongational flow as measured by sans. temporary network model. Macromolecules 23:2577–2582CrossRefGoogle Scholar
  28. Ndoni S, Papadakis CM, Bates F, Almdal K (1995) Laboratory-scale setup for anionic-polymerization under inert atmosphere. Rev Sci Instrum 66:1090–1095CrossRefGoogle Scholar
  29. Nielsen J, Rasmussen H, Hassager O, GH M (2006) Elongational viscosity of monodisperse and bidisperse polystyrene melts. J Rheol 50:453–476CrossRefGoogle Scholar
  30. Pearson DS, Kiss Fetters LJ, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33:517–535CrossRefGoogle Scholar
  31. Perkins TT, Smith D, Chu S (1997) Single polymer dynamics in an elongational flow. Science 276:2016–2021CrossRefGoogle Scholar
  32. Petrie CJS (1979) Elongational flows. Pitman, LondonGoogle Scholar
  33. Read D (2004) Calculation of scattering from stretched copolymers using the tube model: incorporation of the effect of elastic inhomogeneities. Macromolecules 37:5065–5092CrossRefGoogle Scholar
  34. Read D, McLeish T (1997) Microscopic theory for the “lozenge” contour plots in scattering from stretched polymer networks. Macromolecules 30:6376–6384CrossRefGoogle Scholar
  35. Schieber J, Neergaard J, Gupta S (2003) J Rheol 47:213–233CrossRefGoogle Scholar
  36. Straube E, Urban V, Pyckhout-Hintzen W, Richter D, Glinka C (1995) Small-angle neutron scattering investigation of topological constraints and tube deformation in networks. Phys Rev Lett 74:4464–4467CrossRefGoogle Scholar
  37. Strunz P, Mortensen K, Janssen S (2004) SANS-II at SINQ. Installation of the former Risø-SANS facility. Phys B Condens Matter 350:e783–e786CrossRefGoogle Scholar
  38. Underhill PT, Doyle PS (2007) Accuracy of bead-spring chains in strong flows. J non-Newton Fluid Mech 145:109–123CrossRefGoogle Scholar
  39. Wagner M, Kheirandish S, O H (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327CrossRefGoogle Scholar
  40. Wagner MH, Rolón-Garrido VH (2009) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and rouse time. Korea-Aust Rheol J 21:203–211Google Scholar
  41. Wagner M, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459–471CrossRefGoogle Scholar
  42. Westermann S, Urban V, Pyckhout-Hintzen W, Richter D, Straube E (1998) Comment on “lozenge” contour plots in scattering from polymer networks. Phys Rev Lett 80:5449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ole Hassager
    • 1
  • Kell Mortensen
    • 2
  • Anders Bach
    • 1
  • Kristoffer Almdal
    • 3
  • Henrik Koblitz Rasmussen
    • 4
  • Wim Pyckhout-Hintzen
    • 5
  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Basic Sciences and Environment, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  3. 3.Department of NanotechnologyTechnical University of DenmarkKgs. LyngbyDenmark
  4. 4.Department of Mechanical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  5. 5.Jülich Centre for Neutron Science-1 & Institute for Complex SystemsForschungszentrum JülichJülichGermany

Personalised recommendations