Rheologica Acta

, Volume 51, Issue 6, pp 545–557 | Cite as

Experiments on the laminar oscillatory flow of wormlike micellar solutions

Original Contribution


We report new experimental results of the oscillatory flow of a solution of giant micelles in a narrow vertical tube. We explore small driving amplitudes (laminar flow) and a large range of driving frequencies. High-resolution particle image velocimetry measurements of the flow field in a meridional plane of the tube show that the velocity magnitude at the tube axis peaks at well-defined resonance frequencies, where the phase lag with the forcing changes abruptly. The velocity field is highly inflectional and eventually exhibits some hints of shear banding. The results are compared with theoretical predictions based on the upper-convected Maxwell and Oldroyd-B models of the linear shear rheology of the solution, and observed coincidences and discrepancies are discussed in detail.


Oscillatory flow Micellar solutions Resonances PIV 



We acknowledge M. Quevedo and A. Comerma for their help in assembling the experimental setup and designing the electronics, respectively. We are very grateful also to A. Morozov for fruitful discussions. L.C. is supported by the Ministerio de Educación (Spain) through a FPU AP2008-03903 fellowship. The work has received financial support from ME (Spain), projects nr. FIS2006-03525 and FIS2010-21924-C02-02, and from Generalitat de Catalunya, project nr. 2009-SGR-0014.


  1. Adrian RJ (1991) Particle-imaging techniques for experimental fluid-mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Andrienko YA, Siginer DA, Yanovsky YG (2000) Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement. Int J Non-Linear Mech 35:95–102CrossRefGoogle Scholar
  3. Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13(8):2227–2234. doi:10.1021/la961078p CrossRefGoogle Scholar
  4. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Casanellas L, Ortín J (2011) Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: theoretical analysis. J Non-Newton Fluid Mech 166(23–24):1315–1326. doi:10.1016/j.jnnfm.2011.08.010 CrossRefGoogle Scholar
  6. Castrejón-Pita JR, del Río JA, Castrejón-Pita AA, Huelsz G (2003) Experimental observation of dramatic differences in the dynamic response of Newtonian and Maxwellian fluids. Phys Rev E 68:046301, 1–5. doi:10.1103/PhysRevE.68.046301 CrossRefGoogle Scholar
  7. Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55(7–8):799–879. doi:10.1080/00018730601082029 CrossRefGoogle Scholar
  8. Fardin MA, Lopez D, Croso J, Grégoire G, Cardoso O, McKinley GH, Lerouge S (2010) Elastic turbulence in shear banding wormlike micelles. Phys Rev Lett 104(17):178303, 1–4. doi:10.1103/PhysRevLett.104.178303 CrossRefGoogle Scholar
  9. Ferry JD (1941) Studies of the mechanical properties of substances of high molecular weight. I. A photoelastic method for study of transverse vibrations in gels. Rev Sci Instrum 12:79–82CrossRefGoogle Scholar
  10. Ferry JD (1942a) Studies of the mechanical properties of substances of high molecular weight. II. Rigidities of the system polystyrene-xylene and their dependence upon temperature and frequency. J Am Chem Soc 64:1323–1329CrossRefGoogle Scholar
  11. Fischer P, Rehage H (1997) Rheological master curves of viscoelastic surfactant solutions by varying the solvent viscosity and temperature. Langmuir 13(26):7012–7020. doi:10.1021/la970571d CrossRefGoogle Scholar
  12. Herb CA, Prud’homme RK (1994) Structure and flow of surfactant solutions. Eds ACS Washington (Symp Ser 578)Google Scholar
  13. Lambossy P (1952) Oscillations forcées d’un liquide incompressible et visqueux dans un tube rigide et horizontal. Calcul de la force de frottement. Helv Phys Acta 25:371–386Google Scholar
  14. Larson RG (1999) The structure and rheology of complex fluids, 9th edn. Oxford University Press, OxfordGoogle Scholar
  15. Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41:901–924CrossRefGoogle Scholar
  16. Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47(3):301–318. doi:10.1007/s00397-007-0246-z CrossRefGoogle Scholar
  17. Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L, Castrejon-Pita JR, Castrejon-Pita AA, Huelsz G (2003) Particle image velocimetry of the unstable capillary flow of a micellar solution. J Rheol 47(6):1455–1466. doi:10.1122/1.1621421 CrossRefGoogle Scholar
  18. Miller E, Rothstein JP (2007) Transient evolution of shear-banding wormlike micellar solutions. J Non-Newton Fluid Mech 143(1):22–37. doi:10.1016/j.jnnfm.2006.12.005 CrossRefGoogle Scholar
  19. Müller A (1954) Über die Verwendung des Pitot-Rohres zur Geschwindigkeitsmessung. Helv Phys Acta 12:98–111Google Scholar
  20. Nghe P, Degré G, Tabeling P, Ajdari A (2008) High shear rheology of shear banding fluids in microchannels. Appl Phys Lett 93(20):204102, 1–3. doi:10.1063/1.3026740 CrossRefGoogle Scholar
  21. Ober TJ, Soulages J, McKinley GH (2011) Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device. J Rheol 55(5):1127–1159CrossRefGoogle Scholar
  22. Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47(3):283–300. doi:10.1007/s00397-008-0260-9 CrossRefGoogle Scholar
  23. Pipe CJ, Kim NJ, Vasquez PA, Cook LP, McKinley GH (2010) Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions. J Rheol 54(4):881–913. doi:10.1122/1.3439729 CrossRefGoogle Scholar
  24. Raffel M, Willert C, Werely S, Kompenhans J (2007) Particle image velocimetry, a practical guide. Springer, BerlinGoogle Scholar
  25. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions—model systems for rheological research. Mol Phys 74(5):933–973CrossRefGoogle Scholar
  26. del Río JA, López de Haro M, Whitaker S (1998) Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys Rev E 58:6323–6327CrossRefGoogle Scholar
  27. del Río JA, López de Haro M, Whitaker S (2001) Erratum: enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. [Phys Rev E 58,6323 (1998)]. Phys Rev E 64:039901(E)Google Scholar
  28. Siginer A (1991) On the pulsating pressure gradient driven flow of viscoelastic liquid. J Rheol 35:271–311CrossRefGoogle Scholar
  29. Thurston GB (1959) Theory of oscillation of a viscoelastic medium between parallel planes. J Appl Phys 30:1855–1860CrossRefGoogle Scholar
  30. Thurston GB (1960) Theory of oscillation of a viscoelastic fluid in a circular tube. J Acoust Soc Am 32:210–213CrossRefGoogle Scholar
  31. Torralba M, Castrejón-Pita JR, Castrejón-Pita AA, Huelsz G, del Río JA, Ortín J (2005) Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids. Phys Rev E 72(1):016308, 1–9. doi:10.1103/PhysRevE.72.016308 CrossRefGoogle Scholar
  32. Torralba M, Castrejón-Pita AA, Hernández G, Huelsz G, del Río JA, Ortín J (2007) Instabilities in the oscillatory flow of a complex fluid. Phys Rev E 75(5):056307, 1–9. doi:10.1103/PhysRevE.75.056307 CrossRefGoogle Scholar
  33. Tsiklauri D, Beresnev I (2001a) Enhancement in the dynamic response of a viscoelastic fluid flowing through a longitudinally vibrating tube. Phys Rev E 63:(4):046304, 1–4. doi:10.1103/PhysRevE.63.046304 CrossRefGoogle Scholar
  34. Tsiklauri D, Beresnev I (2001b) Non-Newtonian effects in the peristaltic flow of a Maxwell fluid. Phys Rev E 64(3):036303, 1–5. doi:10.1103/PhysRevE.64.036303 CrossRefGoogle Scholar
  35. Vasquez PA, Cook LP, McKinley GH (2007) A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions. J Non-Newton Fluid Mech 144:122–139CrossRefGoogle Scholar
  36. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563Google Scholar
  37. Yamamoto T, Hashimoto T, Yamashita A (2008) Flow analysis for wormlike micellar solutions in an axisymmetric capillary channel. Rheol Acta 47(9):963–974. doi:10.1007/s00397-008-0288-x CrossRefGoogle Scholar
  38. Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newton Fluid Mech 133(2–3):73–90. doi:10.1016/j.jnnfm.2005.10.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departament d’Estructura i Constituents de la Matèria, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations