Rheologica Acta

, Volume 51, Issue 5, pp 395–411

Rheo-PIV of a shear-banding wormlike micellar solution under large amplitude oscillatory shear

  • Christopher J. Dimitriou
  • Laura Casanellas
  • Thomas J. Ober
  • Gareth H. McKinley
Original Contribution


We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients en and vn, which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ0 ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.


Shear banding LAOS Particle image velocimetry Wall slip Wormlike micelles 


  1. Adams JM, Olmsted PD (2009) Nonmonotonic models are not necessary to obtain shear banding phenomena in entangled polymer solutions. Phys Rev Lett 102(6):067801. doi:10.1103/PhysRevLett.102.067801 CrossRefGoogle Scholar
  2. Adams JM, Fielding SM, Olmsted PD (2008) The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions. J Non-Newton Fluid Mech 151(1–3):101–118. doi:10.1016/j.jnnfm.2008.01.008. 4th Annual European Rheology ConferenceCrossRefGoogle Scholar
  3. Adrian RJ (1991) Particle-imaging techniques for experimental fluid-mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  4. Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169. doi:10.1007/s00348-005-0991-7 CrossRefGoogle Scholar
  5. Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeGoogle Scholar
  6. Atalik K, Keunings R (2004) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newton Fluid Mech 122(1–3):107–116. doi:10.1016/j.jnnfm.2003.11.012 CrossRefGoogle Scholar
  7. Ballesta P, Lettinga MP, Manneville S (2007) Superposition rheology of shear-banding wormlike micelles. J Rheol 51(5):1047–1072. doi:10.1122/1.2750665 CrossRefGoogle Scholar
  8. Berret J, Roux D, Porte G (1994) Isotropic-to-nematic transition in wormlike micelles under shear. J Phys II 4(8):1261–1279CrossRefGoogle Scholar
  9. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  10. Boukany PE, Wang SQ (2008) Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: from wall slip, bulk disentanglement to chain scission. Macromolecules 41(4):1455–1464. doi:10.1021/ma702527s CrossRefGoogle Scholar
  11. Britton MM, Callaghan PT (1997) Two-phase shear band structures at uniform stress. Phys Rev Lett 78(26):4930–4933. doi:10.1103/PhysRevLett.78.4930 CrossRefGoogle Scholar
  12. Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B Cond Matter Phys and Complex Syst 7:237–249. doi:10.1007/s100510050610 Google Scholar
  13. Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255. doi:10.1007/s00397-007-0251-2 CrossRefGoogle Scholar
  14. Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55(7):799–879CrossRefGoogle Scholar
  15. Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758. doi:10.1122/1.1895801 CrossRefGoogle Scholar
  16. Davies CJ, Sederman AJ, Pipe CJ, McKinley GH, Gladden LF, Johns ML (2010) Rapid measurement of transient velocity evolution using GERVAIS. J Magn Reson 202(1):93–101. doi:10.1016/j.jmr.2009.10.004 CrossRefGoogle Scholar
  17. Dimitriou CJ, McKinley GH, Venkatesan R (2011) Rheo-PIV analysis of the yielding and flow of model waxy crude oils. Energy Fuels 25(7):3040–3052. doi:10.1021/ef2002348 CrossRefGoogle Scholar
  18. Divoux T, Tamarii D, Barentin C, Manneville S (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104(20):208301. doi:10.1103/PhysRevLett.104.208301 CrossRefGoogle Scholar
  19. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458. doi:10.1122/1.2970095 CrossRefGoogle Scholar
  20. Ewoldt RH, Winter P, Maxey J, McKinley GH (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49(2):191–212. doi:10.1007/s00397-009-0403-7 CrossRefGoogle Scholar
  21. Fardin MA, Lasne B, Cardoso O, Grégoire G, Argentina M, Decruppe JP, Lerouge S (2009) Taylor-like vortices in shear-banding flow of giant micelles. Phys Rev Lett 103(2):028302. doi:10.1103/PhysRevLett.103.028302 CrossRefGoogle Scholar
  22. Fardin MA, Lopez D, Croso J, Grégoire G, Cardoso O, McKinley GH, Lerouge S (2010) Elastic turbulence in shear banding wormlike micelles. Phys Rev Lett 104(17):178303. doi:10.1103/PhysRevLett.104.178303 CrossRefGoogle Scholar
  23. Feindel K, Callaghan PT (2010) Anomalous shear banding: multidimensional dynamics under fluctuating slip conditions. Rheol Acta 49:1003–1013. doi:10.1007/s00397-010-0470-9 CrossRefGoogle Scholar
  24. Gibaud T, Barentin C, Manneville S (2008) Influence of boundary conditions on yielding in a soft glassy material. Phys Rev Lett 101(25):258302. doi:10.1103/PhysRevLett.101.258302 CrossRefGoogle Scholar
  25. Hatzikiriakos SG, Dealy J (1991) Wall slip of molten high-density polyethylenes 1. Sliding plate rheometer studies. J Rheol 35(4):497–523CrossRefGoogle Scholar
  26. Helgeson ME, Vasquez PA, Kaler EW, Wagner NJ (2009) Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition. J Rheol 53(3):727–756. doi:10.1122/1.3089579 CrossRefGoogle Scholar
  27. Hu YT (2010) Steady-state shear banding in entangled polymers?. J Rheol 54(6):1307–1323. doi:10.1122/1.3494134 CrossRefGoogle Scholar
  28. Inn YW, Wissbrun KF, Denn MM (2005) Effect of edge fracture on constant torque rheometry of entangled polymer solutions. Macromolecules 38(22):9385–9388. doi:10.1021/ma0510901 CrossRefGoogle Scholar
  29. Keentok M, Xue S (1999) Edge fracture in cone–plate and parallel plate flows. Rheol Acta 38(4):321–348CrossRefGoogle Scholar
  30. Läuger J, Stettin H (2010) Differences between stress and strain control in the non-linear behavior of complex fluids. Rheol Acta 49:909–930. doi:10.1007/s00397-010-0450-0 CrossRefGoogle Scholar
  31. Lerouge S, Berret JF (2010) Shear-induced transitions and instabilities in surfactant wormlike micelles. In: Dusek K, Joanny JF (eds) Polymer characterization, advances in polymer science, vol 230. Springer, Berlin, pp 1–71Google Scholar
  32. Lettinga MP, Manneville S (2009) Competition between shear banding and wall slip in wormlike micelles. Phys Rev Lett 103(24):248302. doi:10.1103/PhysRevLett.103.248302 CrossRefGoogle Scholar
  33. Lopez-Gonzalez MR, Holmes WM, Callaghan PT (2006) Rheo-NMR phenomena of wormlike micelles. Soft Matter 2:855–869. doi:10.1039/B600978F CrossRefGoogle Scholar
  34. Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47:301–318. doi:10.1007/s00397-007-0246-z CrossRefGoogle Scholar
  35. Manneville S, Salmon JB, Bécu L, Colin A, Molino F (2004a) Inhomogeneous flows in sheared complex fluids. Rheol Acta 43:408–416. doi:10.1007/s00397-004-0366-7 CrossRefGoogle Scholar
  36. Manneville S, Salmon JB, Colin A (2004b) A spatio-temporal study of rheo-oscillations in a sheared lamellar phase using ultrasound. Eur Phys J E Soft Matter J Biol Phys 13:197–212. doi:10.1140/epje/e2004-00046-y CrossRefGoogle Scholar
  37. Manneville S, Bécu L, Grondin P, Colin A (2005) High-frequency ultrasonic imaging: a spatio-temporal approach of rheology. Colloids Surf A Physicochem Eng Asp 270-271:195–204. doi:10.1016/j.colsurfa.2005.06.003, Liquids and MesoScienceCrossRefGoogle Scholar
  38. Marín-Santibáñez BM, Pérez-González J, de Vargas L, Rodríguez-González F, Huelsz G (2006) Rheometry-PIV of shear-thickening wormlike micelles. Langmuir 22(9):4015–4026. doi:10.1021/la053167k, pMID: 16618140CrossRefGoogle Scholar
  39. Masselon C, Salmon JB, Colin A (2008) Nonlocal effects in flows of wormlike micellar solutions. Phys Rev Lett 100(3):038301CrossRefGoogle Scholar
  40. Masselon C, Colin A, Olmsted PD (2010) Influence of boundary conditions and confinement on nonlocal effects in flows of wormlike micellar systems. Phys Rev E 81(2):021502. doi:10.1103/PhysRevE.81.021502 CrossRefGoogle Scholar
  41. McKinley GH, Öztekin A, Byars JA, Brown RA (1995) Self-similar spiral instabilities in elastic flows between a cone and a plate. J Fluid Mech 285:123–164CrossRefGoogle Scholar
  42. Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295–1320. doi:10.1122/1.1795171 CrossRefGoogle Scholar
  43. Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in soft particle pastes. Phys Rev Lett 92(19):198302. doi:10.1103/PhysRevLett.92.198302 CrossRefGoogle Scholar
  44. Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L, Castrejon-Pita JR, Castrejon-Pita AA, Huelsz G (2003) Particle image velocimetry of the unstable capillary flow of a micellar solution. J Rheol 47(6):1455–1466. doi:10.1122/1.1621421 CrossRefGoogle Scholar
  45. Miller E, Rothstein JP (2007) Transient evolution of shear-banding wormlike micellar solutions. J Non-Newton Fluid Mech 143(1):22–37. doi:10.1016/j.jnnfm.2006.12.005 CrossRefGoogle Scholar
  46. Møller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77(4):041507. doi:10.1103/PhysRevE.77.041507 CrossRefGoogle Scholar
  47. Nghe P, Degrè G, Tabeling P, Ajdari A (2008) High shear rheology of shear banding fluids in microchannels. Appl Phys Lett 93(20):204102CrossRefGoogle Scholar
  48. Ober TJ, Soulages J, McKinley GH (2011) Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device. J Rheol 55(5):1127–1159CrossRefGoogle Scholar
  49. Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300. doi:10.1007/s00397-008-0260-9 CrossRefGoogle Scholar
  50. Pipe CJ, Kim NJ, Vasquez PA, Cook LP, McKinley GH (2010) Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions. J Rheol 54(4):881–913. doi:10.1122/1.3439729 CrossRefGoogle Scholar
  51. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry, a practical guide. Springer, BerlinGoogle Scholar
  52. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions—model systems for rheological research. Mol Phys 74(5):933–973CrossRefGoogle Scholar
  53. Salmon JB, Colin A, Manneville S, Molino F (2003) Velocity profiles in shear-banding wormlike micelles. Phys Rev Lett 90(22):228303. doi:10.1103/PhysRevLett.90.228303 CrossRefGoogle Scholar
  54. Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers. Langmuir 10(3):955–961. doi:10.1021/la00015a057 CrossRefGoogle Scholar
  55. Sui C, McKenna GB (2007) Instability of entangled polymers in cone and plate rheometry. Rheol Acta 46(6):877–888. doi:10.1007/s00397-007-0169-8 CrossRefGoogle Scholar
  56. Tapadia P, Ravindranath S, Wang SQ (2006) Banding in entangled polymer fluids under oscillatory shearing. Phys Rev Lett 96(19):196001. doi:10.1103/PhysRevLett.96.196001 CrossRefGoogle Scholar
  57. Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newton Fluid Mech 133(2-3):73–90. doi:10.1016/j.jnnfm.2005.10.009 CrossRefGoogle Scholar
  58. Zhou L, Cook L, McKinley GH (2010) Probing shear-banding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations. J Non-Newton Fluid Mech 165(21-22):1462–1472. doi:10.1016/j.jnnfm.2010.07.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christopher J. Dimitriou
    • 1
  • Laura Casanellas
    • 1
    • 2
  • Thomas J. Ober
    • 1
  • Gareth H. McKinley
    • 1
  1. 1.Hatsopoulos Microfluids Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departament d’Estructura i Constituents de la Matèria, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations