Rheologica Acta

, 50:559 | Cite as

Thermorheological behavior of polyethylene: a sensitive probe to molecular structure

  • Julia A. Resch
  • Ute Keßner
  • Florian J. Stadler
Original Contribution

Abstract

Recent investigations have shown that different topographies in polyethylene (PE) lead to either thermorheological simplicity (linear and short-chain branched PE) or two different types of thermorheologically complex behavior. Low-density polyethylene (LDPE) has a thermorheological complexity, which can be eliminated by a modulus shift, while long-chain branched metallocene PE (LCB-mPE) has a temperature dependent shape of the spectrum and thus a total failure of the time-temperature superposition principle. The reason for that behavior lies in the different relaxation times of linear and long-chain branched chains, present in LCB-mPE. The origin of the thermorheological complexity of LDPE might be the temperature dependence of the miscibility of the different molar mass fractions that differ in their content of short chain branches.

Keywords

Polyethylene Thermorheological complexity Molecular architecture Activation energy 

Notes

Acknowledgements

FJS would like to acknowledge financial support from the “Human Resource Development (Advanced track for Si-based solar cell materials and devices, project number: 201040100660)” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy. JAR gratefully acknowledges the German Research Foundation (DFG) for the financial support of parts of this work.

References

  1. Arrhenius S (1916) The viscosity of pure liquids. Meddelanden Från K Vetenskapsakademiens Nobelinstitut 3:1–40Google Scholar
  2. Brant P, Canich JAM, Dias AJ, Bamberger RL, Licciardi GF, Henrichs PM (1994) long-chain branched polymers and a process to make long-chain branched polymers. Int Pat Appl WO 94/07930Google Scholar
  3. Breuer G, Schausberger A (2011) The recovery of shear modification of polypropylene melts. Rheol Acta (in press)Google Scholar
  4. Carella JM, Gotro JT, Graessley WW (1986) Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 19(3):659–667. doi: 10.1021/ma00157a031 CrossRefGoogle Scholar
  5. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics - i alternating current characteristics. J Chem Phys 9:341–352. doi: 10.1063/1.1750906 CrossRefGoogle Scholar
  6. Dealy J, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behavior and back again. Munich, HanserGoogle Scholar
  7. Fawcett EW, Gibson RO, Perrin MW, Paton JG, Williams EG (1937) Ethylene polymers. Imperial Chemical Industries Ltd, Great BritainGoogle Scholar
  8. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  9. Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41(3):232–244CrossRefGoogle Scholar
  10. Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheology 47(3): 619–630CrossRefGoogle Scholar
  11. Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes I. Creep recovery measurements in shear. Rheol Acta 37(1): 7–20. doi: 10.1007/s003970050086 CrossRefGoogle Scholar
  12. Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H (2002) Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymers. Polymer 43(24):6383–6390CrossRefGoogle Scholar
  13. Hepperle J, Münstedt H (2006) Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior. Rheol Acta 45(5):717–727CrossRefGoogle Scholar
  14. Hepperle J, Münstedt H, Haug PK, Eisenbach CD (2005) Rheological properties of branched polystyrenes: linear viscoelastic behavior. Rheol Acta 45(2):151–163CrossRefGoogle Scholar
  15. Jacovic MS, Pollock D, Porter RS (1979) A rheological study of long branching in polyethylene by blending. J Appl Polym Sci 23:517–527CrossRefGoogle Scholar
  16. Kapnistos M, Vlassopoulos D, Roovers J, Leal LG (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38(18):7852–7862. doi: 10.1021/ma050644x CrossRefGoogle Scholar
  17. Kaschta J, Schwarzl FR (1994a) Calculation of discrete retardation spectra from creep data: 1. method. Rheol Acta 33(6):517–529. doi: 10.1007/BF00366336 CrossRefGoogle Scholar
  18. Kaschta J, Schwarzl FR (1994b) Calculation of discrete retardation spectra from creep data: 2. analysis of measured creep curves. Rheol Acta 33(6):530–541. doi: 10.1007/BF00366337 CrossRefGoogle Scholar
  19. Kaschta J, Stadler FJ (2009) Avoiding waviness in the calculation of relaxation spectra. Rheol Acta 48(6):709–713. doi: 10.1007/s00397-009-0370-z CrossRefGoogle Scholar
  20. Keßner U (2010) Thermorhelogy as a method to investigate the branching structures of polyethylenes. Sierke, GöttingenGoogle Scholar
  21. Keßner U, Münstedt H (2010) Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 51(2):507–513CrossRefGoogle Scholar
  22. Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53(4):1001–1016. doi: 10.1122/1.3124682 CrossRefGoogle Scholar
  23. Kim Y-M, Kim C-W, Park J-K, Kim J-W, Min T-A (1996) Short chain branching distribution and thermal behavior of High-density polyethylene. J Appl Polym Sci 60:2469–2479CrossRefGoogle Scholar
  24. Lai SY, Wilson JR, Knight GW, Stevens JC, Chum PWS (1993) Elastic substantially linear olefin polymers. US Patent US Patent 5,272,236Google Scholar
  25. Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Prog Colloid & Polym Sci 75:111–139. doi: 10.1007/BFb0109414 CrossRefGoogle Scholar
  26. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Roovers J, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-Defined, model long chain branched polyethylene. 2. melt rheological behavior. Macromolecules 35(8):3066–3075CrossRefGoogle Scholar
  27. Mavridis H, Shroff RN (1992) Temperature dependence of polyolefin melt rheology. Polym Eng Sci 32(23):1778–1791CrossRefGoogle Scholar
  28. Meissner J (1969) Rheometer for the study of mechanical properties of deformation of plastic melts under definite tensile stress. Rheol Acta 8(1):78–88CrossRefGoogle Scholar
  29. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRefGoogle Scholar
  30. Meissner J, Stephenson SE, Demarmels A, Portmann P (1982) Multiaxial elongational flows of polymer melts—classification and experimental realization. J Non-Newton Fluid Mech 11(3–4):221–237CrossRefGoogle Scholar
  31. Münstedt H (1981) The influence of various deformation histories on elongational properties of low density polyethylene. Colloid Polym Sci 259:966–972CrossRefGoogle Scholar
  32. Münstedt H, Steffl T, Malmberg A (2005) Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes. Rheol Acta 45(1):14–22CrossRefGoogle Scholar
  33. Münstedt H, Kurzbeck S, Stange J (2006) The importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46(9):1190–1195CrossRefGoogle Scholar
  34. Natta G (1963) From the stereospecific polymerization to the asymmetric autocatalytic synthesis of macromolecules. Nobel lectureGoogle Scholar
  35. Piel C, Starck P, Seppälä JV, Kaminsky W (2006a) Thermal and mechanical analysis of metallocene-catalyzed ethylene-a-olefin copolymers: the influence of length and number of the crystallizing side-chains. J Polym Sci A Polym Chem 44(5):1600–1612. doi: 10.1002/pola.21265 CrossRefGoogle Scholar
  36. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Münstedt H, Kaminsky W (2006b) Structure-property relationships of linear and long-chain branched metallocene high-density polyethylenes and SEC-MALLS. Macromol Chem Phys 207(1):26–38. doi: 10.1002/macp.200500321 CrossRefGoogle Scholar
  37. Resch JA, Stadler FJ, Kaschta J, Münstedt H (2009) Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 42(15):5676–5683. doi: 10.1021/ma9008719 CrossRefGoogle Scholar
  38. Resch JA, Kaschta J, Wolff F, Münstedt H (2011) Influence of molecular parameters on the stress dependence of viscous and elastic properties of polypropylene melts in shear. Rheol Acta 50(1):53–63CrossRefGoogle Scholar
  39. Rokudai M, Fujiki T (1981) Influence of shearing history on the rheological properties and processability of branched polymers. 4. Capillary-Flow and Die Swell of low-density polyethylene. J Appl Polym Sci 26(4):1343–1350CrossRefGoogle Scholar
  40. Shirayama K, Okada T, Kita S (1965) Distribution of short-chain branching in low-density polyethylene. J Polym Sci A Polym Chem 3:907–916Google Scholar
  41. Sinn H, Kaminsky W (1980) Ziegler-Natta catalysis. Adv Organomet Chem 18:99–149CrossRefGoogle Scholar
  42. Stadler FJ (2010) Effect of incomplete datasets on the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 49(10):1041–1057CrossRefGoogle Scholar
  43. Stadler FJ, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48(1):33–49. doi: 10.1007/s00397-008-0303-2 CrossRefGoogle Scholar
  44. Stadler FJ, Karimkhani V (2011) Correlations between terminal rheological quantities and molecular structure in long-chain branched metallocene catalyzed polyethylene. Macromolecules 44(13):5401–5413.Google Scholar
  45. Stadler FJ, Mahmoudi T (2011a) Evaluation of viscosity functions and relaxation spectra of linear and short-chain branched polyethylenes. J Rheol (in press)Google Scholar
  46. Stadler FJ, Mahmoudi T (2011b) Understanding the effect of short-chain branches by analyzing viscosity functions of linear and short-chain branched polyethylenes. Korea-Australia Rheol J (in press)Google Scholar
  47. Stadler FJ, Münstedt H (2008a) Terminal viscous and elastic rheological characterization of ethene-/α-olefin copolymers. J Rheol 52(3):697–712. doi: 10.1122/1.2892039 CrossRefGoogle Scholar
  48. Stadler FJ, Münstedt H (2008b) Erratum to “Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes”. J Non-Newton Fluid Mech 151:227. doi: 10.1016/j.jnnfm.2008.05.001 CrossRefGoogle Scholar
  49. Stadler FJ, Münstedt H (2008c) Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes. J Non-Newton Fluid Mech 151:129–135. doi: 10.1016/j.jnnfm.2008.01.010 CrossRefGoogle Scholar
  50. Stadler FJ, Münstedt H (2009) Correlations between the shape of viscosity functions and the molecular structure of long-chain branched polyethylene. Macromol Mater Eng 294(1):25–34. doi: 10.1002/mame.200800251 CrossRefGoogle Scholar
  51. Stadler FJ, Kaschta J, Münstedt H (2005) Dynamic-mechanical behavior of polyethylenes and ethene-/α-olefin-copolymers: part I: α’-relaxation. Polymer 46(23):10311–10320. doi: 10.1016/j.polymer.2005.07.099 CrossRefGoogle Scholar
  52. Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2006) Dependence of the zero shear-rate viscosity and the viscosity function of linear high density polyethylenes on the mass-average molar mass and polydispersity. Rheol Acta 45(5):755–764. doi: 10.1007/s00397-005-0042-6 CrossRefGoogle Scholar
  53. Stadler FJ, Gabriel C, Münstedt H (2007) Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208(22):2449–2454CrossRefGoogle Scholar
  54. Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behavior of long-chain branched metallocene catalyzed polyethylenes. Macromol 41(4):1328–1333. doi: 10.1021/ma702367a CrossRefGoogle Scholar
  55. Stadler FJ, Becker F, Kaschta J, Buback M, Münstedt H (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48(5):479–490. doi: 10.1007/s00397-008-0334-8 CrossRefGoogle Scholar
  56. Stadler FJ, Arikan B, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2010) Long-Chain Branch Formation in Syndiotactic Polypropene Induced by Vinyl Chloride. Macromol Chem Phys 211:1472–1481. doi: 10.1002/macp.200900688 CrossRefGoogle Scholar
  57. Stange J, Uhl C, Münstedt H (2005) Rheological behavior of blends from a linear and a long-chain branched polypropylene. J Rheol 49:1059–1080CrossRefGoogle Scholar
  58. Stange J, Wächter S, Kaspar H, Münstedt H (2007) Linear rheological properties of the semi-fluorinated copolymer tetrafluoroethylene-hexafluoropropylene-vinylidenfluoride (THV) with controlled amounts of long-chain branching. Macromol 40(7):2409–2416. doi: 10.1021/ma0626867 CrossRefGoogle Scholar
  59. Tackx P, Tacx JCJF (1998) Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer 39(14):3109–3113CrossRefGoogle Scholar
  60. Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen Plot II—Classification of long chain branched polymers by their topology. Rheol Acta 41(1–2):103–113CrossRefGoogle Scholar
  61. van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67(1):5–8Google Scholar
  62. Verser DW, Maxwell B (1970) Temperature dependence of low density polyethylene. Polym Eng Sci 10(2):122–130CrossRefGoogle Scholar
  63. Wood-Adams PM (1998) The effect of long chain branching on the rheological behavior of polyethylenes synthesized using constrained geometry and metallocene catalysts. Department of Chemical Engineering. Montreal, McGill-University. PhD ThesisGoogle Scholar
  64. Wood-Adams PM, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromol 34(18):6281–6290. doi: 10.1021/ma0017034 CrossRefGoogle Scholar
  65. Ziegler K (1963) Consequences and development of an invention. Nobel lectureGoogle Scholar
  66. Zimm BHM, Stockmayer WH (1949) The dimensions of molecules containing branching and rings. J Chem Phys 17(12):1301–1314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Julia A. Resch
    • 1
    • 2
  • Ute Keßner
    • 1
    • 3
  • Florian J. Stadler
    • 1
    • 4
  1. 1.Institute of Polymer MaterialsFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Senoplast Klepsch & Co. GmbHPiesendorfAustria
  3. 3.BASF Coatings GmbHMünsterGermany
  4. 4.School of Semiconductor and Chemical EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations