Advertisement

Rheologica Acta

, Volume 50, Issue 9–10, pp 825–836 | Cite as

Microstructure and magnetorheology of graphite-based MR elastomers

  • T. F. Tian
  • W. H. LiEmail author
  • G. Alici
  • H. Du
  • Y. M. Deng
Original Contribution

Abstract

This study focuses on the magnetorheology of graphite-based magnetorheological elastomers (Gr MREs). By introducing graphite to conventional MREs, the Gr MREs with various graphite weight fractions are fabricated. Both steady-state and dynamic tests were conducted to study rheological properties of the samples. For dynamic tests, the effects of magnetic field, strain amplitude and frequency on both storage modulus and loss modulus were measured. The influence of graphite weight fraction on mechanical performances of these samples was summarized. Also, the microstructures of isotropic and anisotropic Gr MREs were observed. In anisotropic MREs, the graphite powders disperse in matrix randomly. The graphite particles lead to an increment of initial mechanical properties and a decrement of the MR effect.

Keywords

Magnetorheological elastomers Microstructure Graphite Magnetorheology 

Notes

Acknowledgements

This project is supported by University of Wollongong through a UIC grant.

References

  1. Bica I (2009) Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater Lett 63(26):2230–2232CrossRefGoogle Scholar
  2. Bica I (2010) Influence of the magnetic field on the electric conductivity of magnetorheological elastomers. J Ind Eng Chem 16(3):359–363CrossRefGoogle Scholar
  3. Chen L, Gong XL, Li WH (2007) Microstructure and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struc 16(6):2645–2650CrossRefGoogle Scholar
  4. Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85(6):3348–3351CrossRefGoogle Scholar
  5. De Buyl F (2001) Silicone sealants and structural adhesives. Int J Adhes Adhes 21:411–422CrossRefGoogle Scholar
  6. Demchuk SA, Kuzmin VA (2002) Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J Eng Phys Thermophys 75(2):396–400CrossRefGoogle Scholar
  7. Deng HX, Gong XL, Wang LH (2006) Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater Struc 15(5):N111-N116CrossRefGoogle Scholar
  8. Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf A 351:46–51CrossRefGoogle Scholar
  9. Ginder JM, Clark SM, Schlotter WF, Nichols ME (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J Mod Phys B 16(17&18):2412–2418CrossRefGoogle Scholar
  10. Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24(5):669–676CrossRefGoogle Scholar
  11. Kim YK, Koo JH, Kim KS, Kim SH (2011) Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on MR elastomers. Rev Sci Instrum 82:035103CrossRefGoogle Scholar
  12. Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687CrossRefGoogle Scholar
  13. Li WH, Zhang XZ (2010) A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater Struct 19(3):035002CrossRefGoogle Scholar
  14. Li WH, Du H, Chen G, Yeso SH, Guo NQ (2002) Nonlinear rheological behavior of MR fluids: step strain experiments. Smart Mater Struct 11:209–217CrossRefGoogle Scholar
  15. Li WH, Du H, Chen G, Yeo SH, Guo NQ (2003) Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol Acta 42:280–286Google Scholar
  16. Li WH, Kostidis K, Zhang XZ, Zhou Y (2009) Development of a force sensor working with MR Elastomers. In: 2009 Ieee/Asme International Conference on Advanced Intelligent Mechatronics, vols 1-3. ISBN: 978-1-4244-2853-3, pp 233–238Google Scholar
  17. Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740CrossRefGoogle Scholar
  18. Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22(3):245–251CrossRefGoogle Scholar
  19. Ni ZC, Gong XL, Li JF, Chen L (2009) Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. J Intell Mater Syst Struct 20(10):1195–1202CrossRefGoogle Scholar
  20. Park BJ, Song KH, Choi HJ (2009) Magnetic carbonyl iron naaoparticle based magnetorheological suspension and its characteristics. Mater Lett 63:1350–1352CrossRefGoogle Scholar
  21. Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behaviour of composite gels. J Appl Polym Sci 58:787–792CrossRefGoogle Scholar
  22. Xu ZB, Gong XL, Liao GJ, Chen XM (2010) An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J Intell Mater Syst Struct 21(10):1039–1047CrossRefGoogle Scholar
  23. Zhang XZ, Li WH (2009) Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct Syst 5(5):517–529Google Scholar
  24. Zhang XZ, Peng SL, Wen WJ, Li WH (2008) Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct 17(4):045001CrossRefGoogle Scholar
  25. Zhang W, Gong XL, Jiang WQ, Fan YC (2010) Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Mater Struct 19:085008CrossRefGoogle Scholar
  26. Zou H, Zhang LQ, Tian M, Wu SZ, Zhao SH (2009) Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J Appl Polym Sci 115(5):2710–2717CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. F. Tian
    • 1
  • W. H. Li
    • 1
    Email author
  • G. Alici
    • 1
  • H. Du
    • 2
  • Y. M. Deng
    • 3
  1. 1.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia
  2. 2.School of Electrical, Computer and Telecommunications EngineeringUniversity of WollongongWollongongAustralia
  3. 3.Faculty of Mechanical Engineering and MechanicsNingbo UniversityZhejiang ProvincePeople’s Republic of China

Personalised recommendations