Rheologica Acta

, Volume 50, Issue 4, pp 317–326 | Cite as

Mircorheology and jamming in a yield-stress fluid

Original Contribution

Abstract

We study the onset of a yield stress in a polymer microgel dispersion using a combination of particle-tracking microrheology and shear rheometry. On the bulk scale, the dispersion changes from a predominantly viscous fluid to a stiff elastic gel as the concentration of the microgel particles increases. On the microscopic scale, the tracer particles see two distinct microrheological environments over a range of concentrations—one being primarily viscous, the other primarily elastic. The fraction of the material that is elastic on the microscale increases from zero to one as the concentration increases. Our results indicate that the yield stress appears as the result of jamming of the microgel particles, and we infer a model for the small-scale structure and interactions within the dispersion and their relationship to the bulk viscoelastic properties.

Keywords

Yield stress Structure Microgel Jamming 

References

  1. Borrega R, Cloitre M, Betremieux I, Ernst B, Leibler L (1999) Concentration dependence of the low-shear viscosity of polyelectrolyte micro-networks: from hard spheres to soft microgels. Europhys Lett 47:729–735CrossRefGoogle Scholar
  2. Caggioni M, Spicer PT, Blair DL, Lindberg SE, Weitz DA (2007) Rheology and microrheology of a microstructured fluid: the gellan gum case. J Rheol 51:851–865CrossRefGoogle Scholar
  3. Cloitre M, Borrega R, Monti F, Leibler L (2003a) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90:068303-1-4CrossRefGoogle Scholar
  4. Cloitre M, Borrega R, Monti F, Leibler L (2003b) Structure and flow behavior of polyelectrolyte microgels: from suspensions to glasses. C R Physique 4:221–230CrossRefGoogle Scholar
  5. Crassous JJ, Siebenbürger M, Ballauff M, Drechsler M, Henrich O, Fuchs M (2006) Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions. J Chem Phys 125:204906-1-11CrossRefGoogle Scholar
  6. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  7. Crocker J, Weeks E (2008) Particle tracking using IDL. Available at: http://www.physics.emory.edu/weeks/idl/index.html. Accessed 15 April 2010
  8. Das M, Zhang H, Kumacheva E (2006) Microgels: old materials with new applications. Annu Rev Mater Res 36:117–142CrossRefGoogle Scholar
  9. de Bruyn JR, Oppong FK (2010) Rheological and microrheological measurements of soft condensed matter. In: Olafsen J (ed) Experimental and computational techniques in soft condensed matter physics. Cambridge University Press, CambridgeGoogle Scholar
  10. Denton AR (2003) Counterion penetration and effective electrostatic interactions in solutions of polyelectrolyte stars and microgels. Phys Rev E 67:011804-1-10CrossRefGoogle Scholar
  11. Einstein A (1906) A new determination of molecular dimensions. Ann Physik 19:289–306CrossRefGoogle Scholar
  12. Gao Y, Kilfoil ML (2007) Direct imaging of dynamical heterogeneities near the colloid-gel transition. Phys Rev Lett 99:078301-1-4Google Scholar
  13. Gardel ML, Valentine MT, Weitz DA (2005) Microrheology. In: Breuer K (ed) Microscale diagnostic techniques. Springer, New YorkGoogle Scholar
  14. Gottwald D, Likos CN, Kahl G, Löwen H (2004) Phase behavior of ionic microgels. Phys Rev Lett 92:068301-1-4CrossRefGoogle Scholar
  15. Gottwald D, Likos CN, Kahl G, Löwen H (2005) Ionic microgels as model systems for colloids with an ultrasoft electrosteric repulsion: structure and thermodynamics. J Chem Phys 122:074903-1-11Google Scholar
  16. Houghton HA, Hasnain IA, Donald AM (2008) Particle tracking to reveal gelation of hectorite dispersions. Eur Phys J E 25:119–127CrossRefGoogle Scholar
  17. Lally S, Mackenzie P, LeMaitre CL, Freemont TJ, Saunders BR (2007) Microgel particles containing methacrylic acid: pH-triggered swelling behaviour and potential for biomaterial application. J Colloid Interface Sci 316:367–375CrossRefGoogle Scholar
  18. Lee D, Gutowski IA, Bailey AE, Rubatat L, de Bruyn JR, Frisken BJ (2011) Investigating the microstructure of a yield-stress fluid by light scattering. Phys Rev E (to be published)Google Scholar
  19. Levin Y, Diehl A, Fernández-Nieves A, Fernández-Barbero A (2002) Thermodynamics of ionic microgels. Phys Rev E 65:036143-1-6CrossRefGoogle Scholar
  20. Liu J, Gardel ML, Kroy K, Frey E, Hoffman BD, Crocker JC, Bausch AR, Weitz DA (2006) Microrheology probes length scale dependent rheology. Phys Rev Lett 96:118104-1-4Google Scholar
  21. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ (2004) Microgel colloidal crystals. J Phys Chem B 108:19099-19108CrossRefGoogle Scholar
  22. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253CrossRefGoogle Scholar
  23. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378CrossRefGoogle Scholar
  24. Noveon Technical Data Sheet 216 (2002) Available at: http://www.lubrizol.com/WorkArea//DownloadAsset.aspx?id=31922. Accessed 15 April 2010
  25. Oppong FK, Rubatat L, Frisken BJ, Bailey AE, de Bruyn JR (2006) Microrheology and structure of a yield-stress polymer gel. Phys Rev E 73:041405-1-9CrossRefGoogle Scholar
  26. Oppong FK, de Bruyn JR (2007) Diffusion of microscopic tracer particles in a yield-stress fluid. J Non-Newton Fluid Mech 142:104–111CrossRefGoogle Scholar
  27. Oppong FK, Coussot P, de Bruyn JR (2008) Gelation on the microscopic scale. Phys Rev E 78:021405-1-10CrossRefGoogle Scholar
  28. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33CrossRefGoogle Scholar
  29. Piau JM (2007) Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges Meso- and macroscopic properties, constitutive equations and scaling laws. J Non-Newton Fluid Mech 144:1–29CrossRefGoogle Scholar
  30. Prasad V, Trappe V, Dinsmore AD, Segre PN, Cipelletti L, Weitz DA (2003) Universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss 123:1–12CrossRefGoogle Scholar
  31. Roberts G, Barnes HA (2001) New measurements of the flow-curves for Carbopol dispersions without slip artefacts. Rheol Acta 40:499–503CrossRefGoogle Scholar
  32. Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25CrossRefGoogle Scholar
  33. Senff H, Richtering W (1999a) Rheology of a temperature sensitive core-shell latex. Langmuir 15:102-106CrossRefGoogle Scholar
  34. Senff H, Richtering W (1999b) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711CrossRefGoogle Scholar
  35. Tabuteau H, Coussot P, de Bruyn JR (2007) Drag force on a sphere in steady motion through a yield stress fluid. J Rheol 51:125–137CrossRefGoogle Scholar
  36. Valentine MT, Kaplan PD, Thota D, Crocker JC, Gisler T, Prud’homme RK, Beck M, Weitz DA (2001) Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. Phys Rev E 64:061506-1-9CrossRefGoogle Scholar
  37. Wong IY, Gardel ML, Reichman DR, Weeks ER, Valentine MT, Bausch AR, Weitz DA (2004) Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys Rev Lett 92:178101-1-4CrossRefGoogle Scholar
  38. Waigh TA (2005) Microrheology of complex fluids. Rep Prog Phys 68:685–742CrossRefGoogle Scholar
  39. Wu J, Zhou B, Hu Z (2003) Phase behavior of thermally responsive microgel colloids. Phys Rev Lett 90:048304-1-4Google Scholar
  40. Yu Q, Kaloni PN (1988) A note on the suspension viscosity of porous spherical particles. ZAMP 39:937–941CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  2. 2.Unilever Research and DevelopmentColworth Science Park SharnbrookBedfordshireUK

Personalised recommendations