Advertisement

Rheologica Acta

, Volume 50, Issue 1, pp 65–74 | Cite as

Rheological behavior of needle-like hydroxyapatite nano-particle suspensions

  • Shih-Po SunEmail author
  • Mei Wei
  • James R. Olson
  • Montgomery T. Shaw
Original Contribution

Abstract

We describe here the preparation and rheological behavior of stable suspensions of needle-like hydroxyapatite nanoparticles dispersed in organic media, including methylethylketone (MEK), polycaprolactone (PCL) solutions in MEK, and PCL melt. These suspensions are the main ingredients in preparing certain biodegradable orthopedic materials that have some advantages over traditional implants. Rheological properties were experimentally determined at shear rates approaching those used in the processing methods such as roll coating, extrusion, and pultrusion. Analysis of the flow behavior suggests possible shear alignment at high Pe number (Pe ≈ 6,000). The linear viscoelastic properties and the paste-like behavior suggest the formation of a network as the particle content increases. These results are critical in designing a process for making composite materials containing highly oriented anisotropic particles.

Keywords

Hydroxyapatite Biopolymer Particle orientation Flow-alignment Filled polymer Suspension 

Notes

Acknowledgements

The authors would like to acknowledge financial support from NSF GOALI Grant BES-0503315, Connecticut Innovations under the Yankee Ingenuity Technology Competition, Teleflex Medical, and Taiwan Merit Scholarship 0941A022.

References

  1. Bao Y, Senos AMR, Almeida M, Gauckler LJ (2002) Rheological behavior of aqueous suspensions of hydroxyapatite. J Mater Sci, Mater Med 13:639–643CrossRefGoogle Scholar
  2. Becraft ML, Metzner AB (1992) The rheology, fiber orientation, and processing beha vior of fiber-filled fluids. J Rheol 36:143–174CrossRefGoogle Scholar
  3. Bouyer E, Gitzhofer F, Boulos MI (2000) Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci, Mater Med 11:523–531CrossRefGoogle Scholar
  4. Brenner H (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int J Multiph Flow 1:195–341CrossRefGoogle Scholar
  5. Brode GL, Koleske JV (1972) Lactone polymerization and polymer properties. J Macromol Sci Chem 6:1109–1104CrossRefGoogle Scholar
  6. Brown PW, Constantz B (1994) Hydroxyapatite and related materials. CRC, Boca RatonGoogle Scholar
  7. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  8. Carneiro OS, Maia JM (2000) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21:960–969CrossRefGoogle Scholar
  9. Christophe M, Pierre JC, Marie-Claude H, Maryam S, Gilles A (2005) Shear and extensional properties of short glass fiber reinforced polypropylene. Polym Compos 26:247–264CrossRefGoogle Scholar
  10. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622CrossRefGoogle Scholar
  11. Cush R, Dorman D, Russo PS (2004) Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules 37:9577–9584CrossRefGoogle Scholar
  12. Czarnecki L, White JL (1980) Shear flow rheological properties, fiber damage, and mastication characteristics of aramid-, glass-, and cellulose-fiber-reinforced polystyrene melts. J Appl Polym Sci 25:1217–1244CrossRefGoogle Scholar
  13. Daculsi G (1998) Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 19:1473–1478CrossRefGoogle Scholar
  14. Doi M (1982) Rheology of concentrated suspensions of slender rods. Adv Colloid Interface Sci 17:233–239CrossRefGoogle Scholar
  15. Doi M, Edwards SF (1978a) Dynamics of rod-like macromolecules in concentrated solution. Part 1. J Chem Soc, Faraday Trans 2(74):560–570Google Scholar
  16. Doi M, Edwards SF (1978b) Dynamics of rod-like macromolecules in concentrated solution. Part 2. J Chem Soc, Faraday Trans 2(74):918–932Google Scholar
  17. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New YorkGoogle Scholar
  18. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended: a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35:647–685CrossRefGoogle Scholar
  19. Eberle APR, Baird DG, Wapperom P (2008) Rheology of non-Newtonian fluids containing glass fibers: a review of experimental literature. Ind Eng Chem Res 47:3470–3488CrossRefGoogle Scholar
  20. Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51:585–604CrossRefGoogle Scholar
  21. Fan X, Phan-Thien N, Zheng R (1998) A direct simulation of fibre suspensions. J Non-Newton Fluid Mech 74:113–135CrossRefGoogle Scholar
  22. Ferry JD (1942) Mechanical properties of substances of high molecular weight. III. Viscosities of the system polystyrene-xylene. J Am Chem Soc 64:1330–1336CrossRefGoogle Scholar
  23. Fu SY, Lauke B (1996) Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos Sci Technol 56:1179–1190CrossRefGoogle Scholar
  24. Fujishiro Y, Yabuki H, Kawamura K, Sato T, Okuwaki A (1993) Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J Chem Technol Biotechnol 57:349–353CrossRefGoogle Scholar
  25. Gardini D, Galassi C, Lapasin R (2005) Rheology of hydroxyapatite dispersions. J Am Ceram Soc 88:271–276CrossRefGoogle Scholar
  26. Grosvenor MP, Staniforth JN (1996) The effect of molecular weight on the rheological and tensile properties of poly(ε-caprolactone). Int J Pharm 135:103–109CrossRefGoogle Scholar
  27. Guo R, Azaiez J, Bellehumeur C (2005) Rheology of fiber filled polymer melts: role of fiber-fiber interactions and polymer-fiber coupling. Polym Eng Sci 45:385–399CrossRefGoogle Scholar
  28. Hench LL (1998) Bioceramics. J Am Chem Soc 81:1705–1727Google Scholar
  29. Herschel W, Bulkley R (1926) Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym Sci 39:291–300Google Scholar
  30. Hinch EJ, Leal LG (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52:683–712CrossRefGoogle Scholar
  31. Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49:323–334CrossRefGoogle Scholar
  32. Inoue K, Sassa K, Yokogawa Y, Sakka Y, Okido M, Asai S (2003) Control of crystal orientation of hydroxyapatite by imposition of a high magnetic field. Mater Trans 44:1133–1137CrossRefGoogle Scholar
  33. Jain S, Cohen C (1981) Rheology of rodlike macromolecules in semidilute solutions. Macromolecules 14:759–765CrossRefGoogle Scholar
  34. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London, Ser A 102:161–179CrossRefGoogle Scholar
  35. Joseph R, McGregor WJ, Martyn MT, Tanner KE, Coates PD (2002) Effect of hydroxyapatite morphology/surface area on the rheology and processability of hydroxyapatite filled polyethylene composites. Biomaterials 23:4295–4302CrossRefGoogle Scholar
  36. Kamal MR, Mutel A (1985) Rheological properties of suspensions in Newtonian and non-Newtonian Fluids. J Polym Eng 5:293–382Google Scholar
  37. Kataoka T, Kitano T, Sasahara M, Nishijima K (1978) Viscosity of particle filled polymer melts. Rheol Acta 17:149–155CrossRefGoogle Scholar
  38. Kim HW (2007) Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res, Part A 83:169–177CrossRefGoogle Scholar
  39. Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491CrossRefGoogle Scholar
  40. Kitano T, Kataoka T, Nishimura T, Sakai T (1980) Relative viscosities of polymer melts filled with inorganic fillers. Rheol Acta 19:764–769CrossRefGoogle Scholar
  41. Knowles JC, Callcut S, Georgiou G (2000) Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials 21:1387–1392CrossRefGoogle Scholar
  42. Kothapalli C, Wei M, Vasiliev A, Shaw MT (2004) Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater 52:5655–5663CrossRefGoogle Scholar
  43. Kothapalli CR, Wei M, Shaw MT (2008) Solvent-specific gel-like transition via complexation of polyelectrolyte and hydroxyapatite nanoparticles suspended in water-glycerin mixtures: a rheological study. Soft Matter 4:600–605CrossRefGoogle Scholar
  44. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  45. Laun HM (1984) Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym Sci 262:257–269CrossRefGoogle Scholar
  46. Li Y, Weng W (2008) Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. J Mater Sci, Mater Med 19:19–25CrossRefGoogle Scholar
  47. Liu DM (1998) Preparation and characterisation of porous hydroxyapatite bioceramic via a slip-casting route. Ceram Int 24:441–446CrossRefGoogle Scholar
  48. Liu TY, Chen SY, Liu DM (2004) Influence of the aspect ratio of bioactive nanofillers on rheological behavior of PMMA-based orthopedic materials. J Biomed Mater Res, Part B 71:116–122CrossRefGoogle Scholar
  49. Liu C, Shao H, Chen F, Zheng H (2006) Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 27:5003–5013CrossRefGoogle Scholar
  50. Lu L, Mikos AG (1999) Polymer data handbook. Oxford University Press, OxfordGoogle Scholar
  51. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New YorkGoogle Scholar
  52. Martin AF (1951) Toward a referee viscosity method for cellulose. TAPPI J 34:363Google Scholar
  53. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31:385–404CrossRefGoogle Scholar
  54. Papathanasiou TD, Guell DC (1997) Flow-induced alignment in composite materials. Woodhead, CambridgeCrossRefGoogle Scholar
  55. Pryamitsyn V, Ganesan V (2008) Screening of hydrodynamic interactions in Brownian rod suspensions. J Chem Phys 128:134901CrossRefGoogle Scholar
  56. Rahnama M, Koch DL, Shaqfeh ESG (1995) The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow. Phys Fluids 7:487–506CrossRefGoogle Scholar
  57. Ramkumar DHS, Bhattacharya M (1998) Steady shear and dynamic properties of biodegradable polyesters. Polym Eng Sci 38:1426–1435CrossRefGoogle Scholar
  58. Rodriguez-Lorenzo LM, Vallet-Regi M, Ferreira JMF (2001) Colloidal processing of hydroxyapatite. Biomaterials 22:1847–1852CrossRefGoogle Scholar
  59. Roeder RK, Converse GL, Kane RJ, Yue W (2008) Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 60:38–45CrossRefGoogle Scholar
  60. Sadeghian Z, Heinrich JG, Moztarzadeh F (2005) Preparation of highly concentrated aqueous hydroxyapatite suspensions for slip casting. J Mater Sci 40:4619–4623CrossRefGoogle Scholar
  61. Sarvestani AS, Jabbari E (2006) Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites. Biomacromolecules 7:1573–1580CrossRefGoogle Scholar
  62. Sato K, Kogure T, Kumagai Y, Tanaka J (2001) Crystal orientation of hydroxyapatite induced by ordered carboxyl groups. J Colloid Interface Sci 240:133–138CrossRefGoogle Scholar
  63. Schachman HK (1947) Viscosity studies on the association of tobacco mosaic virus. J Am Chem Soc 69:1841–1846CrossRefGoogle Scholar
  64. Shaqfeh ESG, Koch DL (1990) Orientational dispersion of fibers in extensional flows. Phys Fluids A 2:1077–1093CrossRefGoogle Scholar
  65. Shaw MT, Liu ZZ (2006) Single-point determination of nonlinear rheological data from parallel-plate torsional flow. Appl Rheol 16:70–79Google Scholar
  66. Stover CA, Koch DL, Cohen C (1992) Observations of fibre orientation in simple shear flow of semi-dilute suspensions. J Fluid Mech 238:277–296CrossRefGoogle Scholar
  67. Supova M (2009) Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci, Mater Med 20:1201–1213CrossRefGoogle Scholar
  68. Suzuki S, Ohgaki M, Ichiyanagi M, Ozawa M (1998) Preparation of needle-like hydroxyapatite. J Mater Sci Lett 17:381–383CrossRefGoogle Scholar
  69. Tian T, Jiang D, Zhang J, Lin Q (2007) Aqueous tape casting process for hydroxyapatite. J Eur Ceram Soc 27:2671–2677CrossRefGoogle Scholar
  70. Tofighi A, Schaffer K, Palazzolo R (2008) Calcium phosphate cement (CPC): a critical development path. Key Eng Mater 361–363:303–306CrossRefGoogle Scholar
  71. Tucker CL, Liang E (1999) Stiffness predictions for unidirectional short-fiber composites: review and evaluation. Compos Sci Technol 59:655–671CrossRefGoogle Scholar
  72. Wang Y, Xu J, Bechtel SE, Koelling KW (2006) Melt shear rheology of carbon nanofiber/polystyrene composites. Rheol Acta 45:919–941CrossRefGoogle Scholar
  73. Yang JT (1961) Non-Newtonian viscosity and flow birefringence of rigid particles: tobacco mosaic virus. J Am Chem Soc 83:1316–1321CrossRefGoogle Scholar
  74. Yue W, Roeder RK (2006) Micromechanical model for hydroxyapatite whisker reinforced polymer biocomposites. J Mater Res 21:2136–2145CrossRefGoogle Scholar
  75. Zhang J, Maeda M, Kotobuki N, Hirose M, Ohgushi H, Jiang D, Iwasa M (2006) Aqueous processing of hydroxyapatite. Mater Chem Phys 99:398–404CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shih-Po Sun
    • 1
    Email author
  • Mei Wei
    • 2
  • James R. Olson
    • 3
  • Montgomery T. Shaw
    • 1
    • 2
  1. 1.Polymer Program, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Department of Chemical, Materials and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Teleflex MedicalCoventryUSA

Personalised recommendations