Advertisement

Rheologica Acta

, Volume 50, Issue 2, pp 97–105 | Cite as

How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures

  • Sham Ravindranath
  • Shi-Qing WangEmail author
  • M. Olechnowicz
  • V. S. Chavan
  • R. P. Quirk
Original Contribution

Abstract

This work aims to elucidate how molecular parameters dictate the occurrence of inhomogeneous cohesive failure during step strain and large amplitude oscillatory shear (LAOS) respectively in entangled polymer mixtures. Based on three well-entangled polybutadiene (PB) mixtures, we perform simultaneous rheometric and particle-tracking velocimetric (PTV) measurements to illustrate how the slip length controls the degree of shear banding. Specifically, the PB mixtures were prepared using the same parent polymer (M w ∼ 106 g/mol) at 10 wt.% concentration in respective polybutadiene solvents (PBS) of three different molecular weights 1.5, 10, and 46 kg/mol. After step strain, the entangled PB mixture with PBS-1.5 K displayed interfacial failure whereas the PB mixture with PBS-10 K showed bulk failure, demonstrating the effectiveness of our strategy to suppress wall slip by controlling PBS’ molecular weight. Remarkably, the PBS-46K actually allows the elastic yielding to occur homogeneously so that no appreciable macroscopic motions were observed upon shear cessation. PBS is found to play a similar role in LAOS of these three PB mixtures. Finally, we demonstrate that in case of the slip-prone mixture based on PBS-1.5 K the interfacial failure could be drastically reduced by use of shearing plates with considerable surface roughness.

Keywords

Nonlinear rheology Entangled polymer solutions Shear inhomogeneity Elastic yielding Wall slip 

Notes

Acknowledgement

This research is supported, in part, by a grant (DMR-0821697) from the National Science Foundation.

References

  1. Adrian DW, Giacomin AJ (1992) The quasi-periodic nature of a polyurethane melt in oscillatory shear. J Rheol 36:1227–1243CrossRefGoogle Scholar
  2. Archer LA, Chen YL, Larson RG (1995) Delayed slip after step strains in highly entangled polystyrene mixtures. J Rheol 39:519–525CrossRefGoogle Scholar
  3. Archer LA, Sanchez-Reyes J, Juliani (2002) Relaxation dynamics of polymer liquids in nonlinear step strain. Macromolecules 35:10216–10224CrossRefGoogle Scholar
  4. Boukany PE, Wang SQ (2007) A correlation between velocity profile and molecular weight distribution in sheared entangled polymer mixtures. J Rheol 51:217–233CrossRefGoogle Scholar
  5. Boukany PE, Wang SQ (2009a) Shear banding or not in entangled DNA mixtures depending on the level of entanglement. J Rheol 53:73–83CrossRefGoogle Scholar
  6. Boukany PE, Wang SQ, Wang XR (2009b) Step strain of entangled linear polymer melts: new experimental evidence for elastic yielding. Macromolecules 42:6261–6269CrossRefGoogle Scholar
  7. Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49:747–758CrossRefGoogle Scholar
  8. Clemeur N, Rutgers RPG, Debbaut B (2003) On the evaluation of some differential formulations for the pom-pom constitutive model. Rheol Acta 42:217–231Google Scholar
  9. Debbaut B, Burhin H (2002) Large amplitude oscillatory shear and Fourier-transform rheology for a high density polyethylene: experiments and numerical simulation. J Rheol 46:1155–1176CrossRefGoogle Scholar
  10. Dusschoten DV, Wilhelm M, Spiess HW (2001) Two-dimensional Fourier transform rheology. J Rheol 45:1319–1339CrossRefGoogle Scholar
  11. Einaga Y, Osaki K, Kurata M, Kimura S, Tamura M (1971) Stress relaxation of polymer mixtures under large strain. J Polym 2:550–552Google Scholar
  12. Ewoldt RH, Hosoi AW, McKinley GH (2009) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458CrossRefGoogle Scholar
  13. Fukuda M, Osaki K, Kurata M (1975) Nonlinear viscoelasticity of polystyrene mixtures. I. Strain-dependent relaxation modulus. J Polym Sci, Polym Phys Ed 13:1563–1576CrossRefGoogle Scholar
  14. Giacomin AJ, Oakley JG (1992) Structural network models for molten plastics evaluated in large-amplitude oscillatory shear. J Rheol 36:1529–1546CrossRefGoogle Scholar
  15. Giacomin AJ, Jeyaseelan RS, Samurkas T, Dealy JM (1993) Validity of separable BKZ model for large amplitude oscillatory shear. J Rheol 37:811–826CrossRefGoogle Scholar
  16. Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology. Garland, LondonGoogle Scholar
  17. Hu YT, Wilen L, Philips A, Lips A (2007) Is the constitutive relation for entangled polymers monotonic? J Rheol 51:275–295CrossRefGoogle Scholar
  18. Islam MT, Sanchez-Reyes J, Archer LA (2001) Nonlinear rheology of highly entangled polymer liquids: step strain damping function. J Rheol 45:61–82CrossRefGoogle Scholar
  19. Islam MT, Sanchez-Reyes J, Archer LA (2003) Step and steady shear responses of nearly monodisperse highly entangled 1,4-polybutadiene mixtures. Rheol Acta 42:191–198Google Scholar
  20. Jeyaseelan RS, Giacomin AJ (2008) Network theory for polymer solutions in large amplitude oscillatory shear. J Non-Newton Fluid Mech 148:24–32CrossRefGoogle Scholar
  21. Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW (2001) Characterization of polymer dispersions by Fourier transform rheology. Rheol Acta 40:552–559CrossRefGoogle Scholar
  22. Karis TE, Seymour CM, Kono RN, Jhon MS (2002) Harmonic analysis in rheological property measurement. Rheol Acta 41:471–474CrossRefGoogle Scholar
  23. Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259CrossRefGoogle Scholar
  24. Larson RG, Khan SA, Raju VR (1988) Relaxation of stress and birefringence in polymers of high molecular weight. J Rheol 32:145–161CrossRefGoogle Scholar
  25. Li X, Wang SQ, Wang XR (2009) Nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials. J Rheol 53:1255–1274CrossRefGoogle Scholar
  26. Macosko CW (1994) Rheology: principles, measurements and applications. Wiley, New York.Google Scholar
  27. Neidhofer T, Wilhelm M, Debbuat B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene mixtures. J Rheol 47:1351–1371CrossRefGoogle Scholar
  28. Neidhofer T, Sioula S, Hadjichristidis N, Wilhelm M (2004) Distinguishing linear from star-branched polystyrene mixtures with Fourier-transform rheology. Macromol Rapid Commun 25:1921–1926CrossRefGoogle Scholar
  29. Osaki K, Kurata M (1980) Experimental appraisal of the Doi–Edwards theory for polymer rheology based on the data for polystyrene mixtures. Macromolecules 13:671–676CrossRefGoogle Scholar
  30. Ravindranath S, Wang SQ (2007) What are the origins of stress relaxation behaviors in step strain of entangled polymer mixtures? Macromolecules 40:8031–8039CrossRefGoogle Scholar
  31. Ravindranath S, Wang SQ (2008a) Steady state measurements in stress plateau region of entangled polymer mixtures: controlled-rate and controlled-stress modes. J Rheol 52:957–980CrossRefGoogle Scholar
  32. Ravindranath S, Wang SQ (2008b) Large amplitude oscillatory shear behavior of entangled polymer mixtures: particle tracking velocimetric investigation. J Rheol 52:341–358CrossRefGoogle Scholar
  33. Ravindranath S, Wang SQ, Olechnowicz M, Quirk RP (2008) Banding in simple steady shear of entangled polymer mixtures. Macromolecules 41:2663–2670CrossRefGoogle Scholar
  34. Reimers MJ, Dealy JM (1996) Sliding plate rheometer studies of concentrated polystyrene mixtures: large amplitude oscillatory shear of a very high molecular weight polymer in diethyl Phthalate. J Rheol 40:167–186CrossRefGoogle Scholar
  35. Rouyer F, Cohen-Addad S, Höhler R, Sollich P, Fielding SM (2008) The large amplitude oscillatory strain response of aqueous foam: strain localization and full stress Fourier spectrum. Eur Phys J E 27:309–321CrossRefGoogle Scholar
  36. Sanchez-Reyes J, Archer LA (2002) Step strain dynamics of entangled polymer liquids. Macromolecules 35:5194–5202CrossRefGoogle Scholar
  37. Sanchez-Reyes J, Archer LA (2003) Interfacial slip violations in polymer mixtures: role of microscale surface roughness. Langmuir 19:3304–3312CrossRefGoogle Scholar
  38. Schlatter G, Fleury G, Muller R (2005) Fourier transform rheology of branched polyethylene: experiments and models for assessing the macromolecular architecture. Macromolecules 38:6492–6503CrossRefGoogle Scholar
  39. Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newton Fluid Mech 112:237–250CrossRefGoogle Scholar
  40. Tapadia P, Wang SQ (2006) Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys Rev Lett 96:016001CrossRefGoogle Scholar
  41. Tapadia P, Ravindranath S, Wang SQ (2006) Banding in entangled polymer fluids under oscillatory shearing. Phys Rev Lett 96:196001CrossRefGoogle Scholar
  42. Venerus DC, Nair R (2006) Stress relaxation dynamics of an entangled polystyrene mixture following step strain flow. J Rheol 50:59–75CrossRefGoogle Scholar
  43. Vrentas CM, Graessley WW (1982) Study of shear stress relaxation in well characterized polymer liquids. J Rheol 26:359–371CrossRefGoogle Scholar
  44. Wang SQ, Ravindranath S, Boukany P, Olechnowicz M, Quirk R, Halasa A, Mays J (2006) Non-quiescent relaxation of entangled polymeric liquids after step strain. Phys Rev Lett 97:187801CrossRefGoogle Scholar
  45. Wang Y, Wang SQ, Boukany PE, Wang X (2007a) Elastic breakup in uniaxial extension of entangled polymer melts. Phys Rev Lett 99:237801CrossRefGoogle Scholar
  46. Wang SQ, Ravindranath S, Wang Y, Boukany PE (2007b) New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network. J Chem Phys 127:064903CrossRefGoogle Scholar
  47. Wapperom P, Leygue A, Keunings R (2005) Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model. J Non-Newton Fluid Mech 130:63–76CrossRefGoogle Scholar
  48. Wen YH, Hua CC (2009) Chain stretch and relaxation in transient entangled mixtures probed by double-step strain flow. J Rheol 53:781–798CrossRefGoogle Scholar
  49. Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105CrossRefGoogle Scholar
  50. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356CrossRefGoogle Scholar
  51. Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess HW (2000) The crossover between linear and non-linear mechanical behavior in polymer mixtures as detected by Fourier-rheology. Rheol Acta 39:241–246CrossRefGoogle Scholar
  52. Yosick JA, Giacomin AJ, Moldenaers P (1997) A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension. J Non-Newton Fluid Mech 70:103–123CrossRefGoogle Scholar
  53. Yu W, Wang P, Zhou CX (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53:215–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sham Ravindranath
    • 1
  • Shi-Qing Wang
    • 1
    Email author
  • M. Olechnowicz
    • 1
  • V. S. Chavan
    • 1
  • R. P. Quirk
    • 1
  1. 1.Department of Polymer ScienceUniversity of AkronAkronUSA

Personalised recommendations