Advertisement

Rheologica Acta

, Volume 49, Issue 9, pp 901–908 | Cite as

Fractal analysis of viscoelastic data with automated gel point location and its potential application in the investigation of therapeutically modified blood coagulation

  • P. Adrian Evans
  • Matthew Lawrence
  • R. H. Keith Morris
  • Naresh Thirumalai
  • Roger Munro
  • Lisa Wakeman
  • Andrew Beddel
  • P. Rhodri Williams
  • Matthew Barrow
  • Daniel Curtis
  • M. Rowan Brown
  • Karl Hawkins
Original Contribution

Abstract

This study reports an automated numerical method for the location of the gel point in oscillatory shear data and demonstrates its potential application in measurements on therapeutically modified (heparinised) samples of healthy coagulating blood. Heparin prolongs the onset of clot formation and has a significant effect on the microstructure of the clot which is eventually formed. The results demonstrate the potential of this rheometrical technique as a new tool for monitoring the effect of heparin on samples of whole blood with significantly better linearity of response within the therapeutic range than another global coagulation monitoring technique (thromboelastography) which has previously been used.

Keywords

Incipient clot Anti-coagulant Fractal dimension Rheometry 

Notes

Acknowledgements

The authors are grateful for the support of EPSRC grant EP/C513037/1 and a Royal Society Brian Mercer Feasibility Award in this work.

References

  1. Bossuyt P (2003) The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med 138:40–45PubMedGoogle Scholar
  2. Brown MR, Errington R, Rees P, Williams PR, Wilks SP (2010) A highly efficient algorithm for the generation of random fractal aggregates. Phys D: Nonlinear Phenom 239:1061–1066zbMATHCrossRefADSGoogle Scholar
  3. Burghardt WR, Goldstick TK, Leneschmidt J, Kempka K (1995) Nonlinear viscoelasticity and thromboelastograph. 1. Studies on bovine plasma clots. Biorheology 32:621–630CrossRefPubMedGoogle Scholar
  4. Chambon F, Winter HH (1987) Linear viscoelasticity at the Gel Point of a cross-linking PDMS with imbalanced stoichiometry. J Rheol 31(8):683–697CrossRefADSGoogle Scholar
  5. Evans PA, Hawkins K, Williams PR, Williams RL (2008a) Rheometrical detection of incipient blood clot formation by Fourier transform mechanical spectroscopy. J Non-Newton Fluid Mech 148:122–127zbMATHCrossRefGoogle Scholar
  6. Evans PA, Hawkins K, Lawrence M, Williams PR, Williams RL (2008b) Studies of whole blood coagulation by oscillatory shear, thromboelastography and free oscillation rheometry. Clin Hemorheol Microcirc 38:267–277PubMedGoogle Scholar
  7. Evans PA, Hawkins K, Lawrence M, Williams RL, Barrow MS, Thirumalai N, Williams PR (2008c) Rheometry and associated techniques for blood coagulation studies. Med Eng Phys 30:671–679CrossRefPubMedGoogle Scholar
  8. Evans PA, Hawkins K, Morris RHK, Thirumalai N, Munro R, Wakeman L, Lawrence M, Williams PR (2010) Gel point and fractal microstructure of incipient blood clots are significant new markers of haemostasis for healthy and anticoagulated blood. Blood. doi: 10.1182/blood-2010-02-269324 PubMedGoogle Scholar
  9. Hartert H (1960) Thromboelastography: physical and physiological aspects. In: Copley AL, Stainsby C (eds) Flow properties of blood and other biological systems. Pergamon, Oxford, pp 86–198Google Scholar
  10. Hawkins K, Lawrence M, Williams PR, Williams RL (2008) A study of gelatin gelation by Fourier transform mechanical spectroscopy. J Non-Newton Fluid Mech 148:127–133zbMATHCrossRefGoogle Scholar
  11. Holly EE, Venkataraman SK, Chambon F, Winter HH (1988) Fourier transform mechanical spectroscopy of viscoelastic materials with transient structure. J Non-Newton Fluid Mech 27:17–26CrossRefGoogle Scholar
  12. Hsu SH, Jamieson AM (1993) Viscoelastic behaviour at the thermal sol-gel transition of gelatin. Polymer 34:2602–2608CrossRefGoogle Scholar
  13. Kearon C et al (2001) A comparison of three months of anticoagulation with extended anticoagulation for a first episode of idiopathic venous thromboembolism. Chest 119:1S–370SCrossRefGoogle Scholar
  14. Lee BY, Taha S, Trainor FS, Kavner D, McCann WJ (1980) Monitoring heparin therapy with thromboelastography and activated partial thromboplastin time. World J Surg 4:323–330CrossRefPubMedGoogle Scholar
  15. Losa GA, Merlini D, Nonnenmacher TF, Weibel E (2002) Fractals in biology and medicine, vol 3. Birkhauser, BaselzbMATHGoogle Scholar
  16. Michon C, Cuvelier G, Launay B (1993) Concentration dependence of the critical viscoelastic properties of gelatin at the gel. Rheol Acta 32:94–103CrossRefGoogle Scholar
  17. Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromol 22:4658–4660CrossRefADSGoogle Scholar
  18. Muthukumar M, Winter HH (1986) Fractal dimension of a cross-linking polymer at the gel point. Macromol 19:1284–1285CrossRefADSGoogle Scholar
  19. Nenci GG, Parise P, Morini M, Rossini A, Agnelli G (1992) Fibrin clots obtained from plasma containing heparin show a higher sensitivity to t-PA-induced lysis. Blood Coagul Fibrinolysis 3:279–285CrossRefPubMedGoogle Scholar
  20. Pivalizza EG (2002) Monitoring of hirudin therapy with the thromboelastograph. J Clin Anesth 14:456–458CrossRefPubMedGoogle Scholar
  21. Scott Blair GW, Burnett J (1968) Thromboelastography of Newtonian fluids. Biorheology 5:177Google Scholar
  22. Tosh SM, Marangoni AG (2004) Determination of the maximum gelation temperature in gelatin gels. Appl Phys Lett 84:4242–4244CrossRefADSGoogle Scholar
  23. Weisel JW (2004) The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chemist 112:267–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. Adrian Evans
    • 1
  • Matthew Lawrence
    • 1
  • R. H. Keith Morris
    • 4
  • Naresh Thirumalai
    • 1
  • Roger Munro
    • 3
  • Lisa Wakeman
    • 3
  • Andrew Beddel
    • 3
  • P. Rhodri Williams
    • 2
  • Matthew Barrow
    • 2
  • Daniel Curtis
    • 2
  • M. Rowan Brown
    • 2
    • 4
  • Karl Hawkins
    • 1
  1. 1.School of MedicineSwansea UniversitySwanseaUK
  2. 2.School of EngineeringSwansea UniversitySwanseaUK
  3. 3.Department of HaematologyMorriston HospitalSwanseaUK
  4. 4.School of Applied SciencesUWICCardiffUK

Personalised recommendations