Rheologica Acta

, Volume 49, Issue 4, pp 359–370

Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER)

  • Johanna Aho
  • Víctor H. Rolón-Garrido
  • Seppo Syrjälä
  • Manfred H. Wagner
Original Contribution


Transient extensional viscosity of low-density polyethylene was measured by Sentmanat extensional rheometer in combination with MCR301 rheometer (Anton Paar) at different temperatures. Issues related to the experimental procedure, namely fixing the sample and controlling the temperature, as well as correction for true sample dimensions in calculation of extensional viscosity of polymer melts, were discussed. The molecular stress function model was used to describe the experimental data. The results were in accordance with other test methods and theoretical description when the measurements were done without using the sample fixing clamps, careful temperature control was followed, and the experimental data were corrected for sample dimensions affected by thermal expansion and pre-stretching at the beginning of the test.


SER Sentmanat extensional rheometer Uniaxial extension Extensional viscosity LDPE MSF model 


  1. Baldi F, Franceschini A, Riccò T (2007) Determination of the elongational viscosity of polymers melts by melt spinning experiments, a comparison with different experimental techniques. Rheol Acta 46:965–978CrossRefGoogle Scholar
  2. Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. PhD Thesis, Institut für Kunststofftechnologie, University of StuttgartGoogle Scholar
  3. Bernnat A (2001) Polymer melt rheology and rheotens test. PhD thesis, Institut für Kunststofftechnologie, University of StuttgartGoogle Scholar
  4. Cadmould 3D-F (2009) V3.0.0.382 material database. Simcon kunststofftechnische Software GmbH, GermanyGoogle Scholar
  5. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behaviour and back again. Carl Hanser, Munich, ISBN-10:1-56990-381-6, pp 392–399Google Scholar
  6. Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends. Rheol Acta 47:19–31CrossRefGoogle Scholar
  7. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J Chem Soc Faraday Trans 2(74):1802–1817Google Scholar
  8. Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4—rheological properties. J Chem Soc Faraday Trans 2(75):38–54Google Scholar
  9. Férec J, Heuzeuy M-C, Pérez-González J, deVargas L, Ausias G, Carreau PJ (2009) Investigation of the rheological properties of short glass fiber-filled polypropylene in extensional flow. Rheol Acta 48:59–72CrossRefGoogle Scholar
  10. Fernández San Martin M (2009) University of the Basque Country, Spain. Personal communicationGoogle Scholar
  11. Garofalo E, Russo GM, Scarfato P, Incarnato L (2009) Nanostructural modifications of polyamide/MMT hybrids under isothermal and non-isothermal elongational flow. J Polym Sci Part B Polym Phys 47:981–993CrossRefADSGoogle Scholar
  12. Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48:895–914CrossRefADSGoogle Scholar
  13. Gubler MG, Kovacs AJ (1959) La Structure du polyéthylène consideré comme un mélange de n-paraffines. J Polym Sci 34:551–568CrossRefGoogle Scholar
  14. Hadinata C, Boos D, Gabriel C, Wassner E, Rüllmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear induced crystallization. J Rheol 51(2):195–215CrossRefADSGoogle Scholar
  15. Lyhne A, Rasmussen HK, Hassager O (2009) Simulation of elastic rupture in extension of entangled monodisperse polymer melts. Phys Rev Lett. doi:138301 Google Scholar
  16. Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) Measuring uniaxial extensional viscosity using a modified rotational rheometer. J Non-Newton Fluid Mech 80:183–197MATHCrossRefGoogle Scholar
  17. Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymer liquids. Macromolecules 13:380–387CrossRefADSGoogle Scholar
  18. McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415CrossRefMathSciNetADSGoogle Scholar
  19. Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402CrossRefGoogle Scholar
  20. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRefGoogle Scholar
  21. Mitsoulis E, Hatzikiriakos SG (2009) Rolling of bread dough: experiments and simulations. Food Bioprod Process 87:124–138CrossRefGoogle Scholar
  22. Morrison FA (2001) Understanding rheology. Oxford University Press, Oxford, ISBN:0-19-514166-0, pp 409–418Google Scholar
  23. Muliawan EB, Hatzikiriakos SG (2007) Rheology of mozzarella cheese. Int Dairy J 17:1063–1072CrossRefGoogle Scholar
  24. Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23:421–436CrossRefADSGoogle Scholar
  25. Ng TSK, McKinley GH, Padmanabhan M (2006) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274Google Scholar
  26. Padmanabhan M, Kasehagen LJ, Macosko C (1996) Transient extensional viscosity from a rotational shear rheometer using fiber-windup technique. J Rheol 40:473–481CrossRefADSGoogle Scholar
  27. Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newton Fluid Mech 135:58–67CrossRefGoogle Scholar
  28. Pivokonsky R, Zatloukal M, Filip P (2008) On the predictive/fitting capabilities of the advanced differential constitutive equations for linear polyethylene melts. J Non-Newton Fluid Mech 150:56–64CrossRefGoogle Scholar
  29. Pivokonsky R, Zatloukal M, Filip P, Tzoganakis C (2009) Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J Non-Newton Fluid Mech 135:1–6CrossRefGoogle Scholar
  30. Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381CrossRefADSGoogle Scholar
  31. Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46:583–593CrossRefGoogle Scholar
  32. Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697CrossRefGoogle Scholar
  33. Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669CrossRefGoogle Scholar
  34. Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606CrossRefADSGoogle Scholar
  35. Stamboulides C, Hatzikiriakos SG (2006) Rheology and processing of molten poly(methyl methacrylate) resins. Int Polym Process 21:155–163Google Scholar
  36. Svrcinova P, Kharlamov A, Filip P (2007) On the measurement of elongational viscosity of polyethylene materials. Acta Tech 54:49–57Google Scholar
  37. Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049–1068CrossRefADSGoogle Scholar
  38. Wagner MH, Rolón-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. novel trends of rheology III. In: Proceedings of the international conference. Zlin, Czech Republic. ISBN: 978-0-7354-0689-6Google Scholar
  39. Wagner MH, Rolón-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and Rouse time. Korea Aust Rheol J 21(4):203–211Google Scholar
  40. Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRefADSGoogle Scholar
  41. Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47:779–793CrossRefADSGoogle Scholar
  42. Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48:489–503CrossRefADSGoogle Scholar
  43. Wagner MH, Kheirandish S, Yamaguchi M (2005a) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta 44:198–218CrossRefGoogle Scholar
  44. Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T (2005b) Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta 44:235–243CrossRefGoogle Scholar
  45. Wang Y, Wang SQ (2008) From elastic deformation to terminal flow of a monodisperse entangled melt in uniaxial extension. J Rheol 52:1275–1290CrossRefADSGoogle Scholar
  46. Winter HH, Mours M (2007) Iris developments. http://rheology.tripod.com/
  47. Wollny K (2009) Anton Paar GmbH, Germany. Personal communicationGoogle Scholar
  48. Yu K, Marin JMR, Rasmussen HK, Hassager O (2009) Modeling of Sentmanat extensional rheometer. Annual European Rheology Conference, Cardiff, WalesGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Johanna Aho
    • 1
    • 2
  • Víctor H. Rolón-Garrido
    • 2
  • Seppo Syrjälä
    • 1
  • Manfred H. Wagner
    • 2
  1. 1.Plastics and Elastomer TechnologyTampere University of TechnologyTampereFinland
  2. 2.Chair of Polymer Engineering/Polymer PhysicsBerlin Institute of Technology (TU Berlin)BerlinGermany

Personalised recommendations