Rheologica Acta

, Volume 49, Issue 2, pp 191–212 | Cite as

Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials

  • Randy H. Ewoldt
  • Peter Winter
  • Jason Maxey
  • Gareth H. McKinley
Original Contribution

Abstract

We explore the utility of strain-controlled large amplitude oscillatory shear (LAOS) deformation for identifying and characterizing apparent yield stress responses in elastoviscoplastic materials. Our approach emphasizes the visual representation of the LAOS stress response within the framework of Lissajous curves with strain, strain rate, and stress as the coordinate axes, in conjunction with quantitative analysis of the corresponding limit cycle behavior. This approach enables us to explore how the material properties characterizing the yielding response depend on both strain amplitude and frequency of deformation. Canonical constitutive models (including the purely viscous Carreau model and the elastic Bingham model) are used to illustrate the characteristic features of pseudoplastic and elastoplastic material responses under large amplitude oscillatory shear. A new parameter, the perfect plastic dissipation ratio, is introduced for uniquely identifying plastic behavior. Experimental results are presented for two complex fluids, a pseudoplastic shear-thinning xanthan gum solution and an elastoviscoplastic invert-emulsion drilling fluid. The LAOS test protocols and the associated material measures provide a rheological fingerprint of the yielding behavior of a complex fluid that can be compactly represented within the domain of a Pipkin diagram defined by the amplitude and timescale of deformation.

Keywords

Nonlinear viscoelasticity Yield stress Viscoplastic LAOS Lissajous–Bowditch curve 

Notes

Acknowledgements

This work was supported in part by a gift from Procter & Gamble (Cincinnati, OH). R.H.E. gratefully acknowledges funding from the National Science Foundation Graduate Research Fellowship Program and the DARPA Chemical Robots program.

References

  1. API (2009) Recommended practice for laboratory testing of drilling fluids, American Petroleum Institute. API RP 13IGoogle Scholar
  2. Atalik K, Keunings R (2004) On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear. J Non-Newton Fluid Mech 122(1–3):107–116CrossRefMATHGoogle Scholar
  3. Barnes HA (1999) The yield stress - a review or ‘pi alpha nu tau alpha rho epsilon iota’ - everything flows? J Non-Newton Fluid Mech 81(1–2):133–178CrossRefMATHGoogle Scholar
  4. Barnes HA, Walters K (1985) The yield stress myth. Rheol Acta 24(4):323–326CrossRefGoogle Scholar
  5. Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1(1):1–70Google Scholar
  6. Bird R, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids: volume 1 fluid mechanics. John Wiley & Sons, Inc, New YorkGoogle Scholar
  7. Brunn PO, Asoud H (2002) Analysis of shear rheometry of yield stress materials and apparent yield stress materials. Rheol Acta 41(6):524–531CrossRefGoogle Scholar
  8. Cho KS, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49(3):747–758CrossRefADSGoogle Scholar
  9. Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437CrossRefGoogle Scholar
  10. Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing: theory and applications. Van Nostrand Reinhold, New YorkGoogle Scholar
  11. Debbaut B, Burhin H (2002) Large amplitude oscillatory shear and Fourier-transform rheology for a high-density polyethylene: Experiments and numerical simulation. J Rheol 46(5):1155–1176CrossRefADSGoogle Scholar
  12. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended - a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685CrossRefADSGoogle Scholar
  13. Ewoldt RH, McKinley GH (2009) On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves. Rheol Acta. doi:10.1007/s00397-009-0408-2 Google Scholar
  14. Ewoldt RH, Winter P, McKinley GH (2007) MITlaos version 2.1 Beta for MATLAB. Cambridge, MA, self-publishedGoogle Scholar
  15. Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458CrossRefADSGoogle Scholar
  16. Fischer C, Plummer CJG, Michaud V, Bourban PE, Manson JAE (2007) Pre- and post-transition behavior of shear-thickening fluids in oscillating shear. Rheol Acta 46(8):1099–1108CrossRefGoogle Scholar
  17. Ganeriwala SN, Rotz CA (1987) Fourier-transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers. Polym Eng Sci 27(2):165–178CrossRefGoogle Scholar
  18. Graham MD (1995) Wall slip and the nonlinear dynamics of large-amplitude oscillatory shear flows. J Rheol 39(4):697–712CrossRefMathSciNetADSGoogle Scholar
  19. Harris J, Bogie K (1967) The experimental analysis of non-linear waves in mechanical systems. Rheol Acta 6(1):3–5CrossRefGoogle Scholar
  20. Hyun K, Wilhelm M (2009) Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42(1):411–422CrossRefADSGoogle Scholar
  21. Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newton Fluid Mech 107(1–3):51–65CrossRefMATHGoogle Scholar
  22. Jeyaseelan RS, Giacomin AJ (2008) Network theory for polymer solutions in large amplitude oscillatory shear. J Non-Newton Fluid Mech 148(1–3):24–32CrossRefMATHGoogle Scholar
  23. Klein C, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40(12):4250–4259CrossRefADSGoogle Scholar
  24. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley-VCH, New York, p 218Google Scholar
  25. Macsporran WC, Spiers RP (1982) The dynamic performance of the Weissenberg rheogoniometer. 2. large-amplitude oscillatory shearing - fundamental response. Rheol Acta 21(2):193–200CrossRefGoogle Scholar
  26. Macsporran WC, Spiers RP (1984) The dynamic performance of the Weissenberg rheogoniometer. 3. large-amplitude oscillatory shearing - harmonic analysis. Rheol Acta 23(1):90–97CrossRefGoogle Scholar
  27. Maxey J (2007) Thixotropy and yield stress behavior in drilling fluids. AADE 2007 Drilling Fluids Conference (AADE-07-NTCE-37)Google Scholar
  28. Mitsoulis E (2007) Flows of viscoplastic materials: models and computations. In: Binding DM, Hudson NE, Keunings R (eds) Rheology reviews 2007. Glasgow, Universities Design & Print, pp 135–178Google Scholar
  29. Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Non-Newton Fluid Mech 102(2):157–178CrossRefMATHGoogle Scholar
  30. Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385–404CrossRefADSMATHGoogle Scholar
  31. Philippoff W (1966) Vibrational measurements with large amplitudes. Trans Soc Rheol 10(1):317–334CrossRefGoogle Scholar
  32. Pipkin AC (1972) Lectures on viscoelasticity theory. Springer, New YorkMATHGoogle Scholar
  33. Rouyer F, Cohen-Addad S, Höhler R, Sollich P, Fielding SM (2008) The large amplitude oscillatory strain response of aqueous foam: strain localization and full stress Fourier spectrum. Eur Phys J E 27(3):309–321CrossRefGoogle Scholar
  34. Saramito P (2007) A new constitutive equation for elastoviscoplastic fluid flows. J Non-Newton Fluid Mech 145(1):1–14CrossRefGoogle Scholar
  35. Stadler FJ, Leygue A, Burhin H, Bailly C (2008) The potential of large amplitude oscillatory shear to gain an insight into the long-chain branching structure of polymers. The 235th ACS National Meeting, vol 49, New Orleans, LA, U.S.A., Polymer Preprints ACS, pp 121–122Google Scholar
  36. Tee TT, Dealy JM (1975) Nonlinear viscoelasticity of polymer melts. Trans Soc Rheol 19(4):595–615CrossRefGoogle Scholar
  37. Ugural AC, Fenster SK (2003) Advanced strength and applied elasticity. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  38. van Dusschoten D, Wilhelm M (2001) Increased torque transducer sensitivity via oversampling. Rheol Acta 40(4):395–399CrossRefGoogle Scholar
  39. Wilhelm M (2002) Fourier-Transform rheology. Macromol Mater Eng 287(2):83–105CrossRefGoogle Scholar
  40. Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38(4):349–356CrossRefGoogle Scholar
  41. Yoshimura AS, Prudhomme RK (1987) Response of an elastic Bingham fluid to oscillatory shear. Rheol Acta 26(5):428–436CrossRefGoogle Scholar
  42. Yoshimura AS, Prudhomme RK (1988) Wall slip effects on dynamic oscillatory measurements. J Rheol 32(6):575–584CrossRefADSGoogle Scholar
  43. Yu W, Wang P, Zhou C (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53(1):215–238CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Randy H. Ewoldt
    • 1
  • Peter Winter
    • 1
  • Jason Maxey
    • 2
  • Gareth H. McKinley
    • 1
  1. 1.Hatsopoulos Microfluids Laboratory, Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.HalliburtonHoustonUSA

Personalised recommendations