Advertisement

Rheologica Acta

, 48:993 | Cite as

Rheomechanical and morphological study of compatibilized PP/EVOH blends

  • Ana AresEmail author
  • Jorge Silva
  • Joao M. Maia
  • Luis Barral
  • María J. Abad
Original Contribution

Abstract

In order to find the relationships between processibility and properties of the polypropylene/ethylene vinyl alcohol copolymer (PP/EVOH) blends, their rheological behavior, in both shear and extensional flows, was studied and related with mechanical, morphological, and barrier properties of the materials. The nonlinear viscoelastic behavior in shear was also analyzed. The data showed that the rheological parameters (viscosity, loss modulus, storage modulus, extensional viscosity, and Trouton ratio) improved with the addition of low quantities of sodium ionomer copolymer used as compatibilizer. At the same time, the overall properties of the PP/EVOH blends improved as a result of the compatibilizer addition. The morphological analysis showed that the changes in the material properties were related with a more uniform distribution of EVOH particles in the PP matrix. The rheological data obtained allowed us to choose the optimal range for EVOH and ionomer contents, especially in terms of combining good processing characteristics with the good final properties.

Keywords

Polypropylene/EVOH blends Extensional rheology Nonlinear viscoelastic behavior Compatibilization Mechanical properties Barrier properties 

Notes

Acknowledgements

Financial support for this work was provided by the Secretaría Xeral de Investigación e Desenrolo, Xunta de Galicia, through grant XUGA-PGIDT02TM17201PR and the Portuguese government through FCT—Foundation for Science and Technology, through grant BD/12833/2003.

References

  1. Abad MJ, Ares A, Barral L, Cano J, Diez FJ, García-Garabal S, López J, Ramírez C (2004) J Appl Polym Sci 94(4):1763CrossRefGoogle Scholar
  2. Abad MJ, Ares A, Barral L, Eguizábal JI (2005) Polym Int 54(4):673CrossRefGoogle Scholar
  3. Barroso VC, Covas JA, Maia JM (2002) Rheol Acta 41(1–2):154CrossRefGoogle Scholar
  4. Barroso VC, Ribeiro SP, Maia JM (2003) Rheol Acta 42(5):483CrossRefGoogle Scholar
  5. Demarquete NR, Kamal MR (1998) J Appl Polym Sci 70(1):75CrossRefGoogle Scholar
  6. Filipe S, Cidade MT, Maia JM (2006) Rheol Acta 45(3):281CrossRefGoogle Scholar
  7. Fisher I, Zoldan J, Siegmann A (2000) Polym Comp 21:476CrossRefGoogle Scholar
  8. Garmabi H, Demarquette NR, Kamal MR (1998) Int Polym Process 13(2):183Google Scholar
  9. Hong JS, Ahn KH, Lee SJ (2005a) Rheol Acta 45(2):202CrossRefGoogle Scholar
  10. Hong JS, Kim JL, Ahn KH, Lee SJ (2005b) J Appl Polym Sci 97(4):1702CrossRefGoogle Scholar
  11. Iza M, Bousmina M, Jerome R (2001) Rheol Acta 40:10CrossRefGoogle Scholar
  12. Kalfoglou NK, Samios CK, Papadopoulou CP (1998) J Appl Polym Sci 68(4):589CrossRefGoogle Scholar
  13. Kamal MR, Garmabi H, Hozhabr S, Arghyris L (1995) Polym Eng Sci 35:41CrossRefGoogle Scholar
  14. Lasagabaster A, Abad MJ, Barral L, Ares A (2006) Eur Polym J 42(11):3121CrossRefGoogle Scholar
  15. López-Rubio A, Lagarón JM, Giménez E, Cava D, Hernández-Muñoz P, Yamamoto T, Gavara R (2003) Macromolecules 36(25):9467CrossRefADSGoogle Scholar
  16. López-Rubio A, Hernández-Muñoz P, Gímenez E, Yamamoto T, Gavara R, Lagarón JM (2005) J Appl Polym Sci 96(6):2192CrossRefGoogle Scholar
  17. Lohfink GW, Kamal MR (1993) Polym Eng Sci 33(21):1404CrossRefGoogle Scholar
  18. Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) J Non-Newton Fluid Mech 80(2,3):183zbMATHCrossRefGoogle Scholar
  19. Macaubas PHP, Demarquette NR, Dealy JM (2005) Rheol Acta 44(3):295CrossRefGoogle Scholar
  20. Macknight WJ, Earnest TR (1981) Macromol Rev 16:41CrossRefGoogle Scholar
  21. Silva J, Machado AV, Maia JM (2007) Rheol Acta 46(8):1091CrossRefGoogle Scholar
  22. Sugimoto M, Masabuchi Y, Takimoto J, Koyama K (2001) Macromolecules 34(17):6056CrossRefADSGoogle Scholar
  23. Utracki LA (1988) Polym Eng Sci 28(21):1401CrossRefGoogle Scholar
  24. Walling N, Kamal MR (1996) Adv Polym Technol 15(4):269Google Scholar
  25. Yeh JT, Yao WH, Du Q, Chen CC (2005) J Polym Sci Part B Polym Phys 43(5):511CrossRefGoogle Scholar
  26. Yeo JH, Lee CH, Park CS, Lee KY, Nam JD, Kim SW (2001) Adv Polym Technol 20(3):191CrossRefGoogle Scholar
  27. Zhang Z, Britt IJ, Tung MA (2001) J Appl Polym Sci 82(8):1866CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ana Ares
    • 1
    Email author
  • Jorge Silva
    • 2
  • Joao M. Maia
    • 2
  • Luis Barral
    • 1
  • María J. Abad
    • 1
  1. 1.Grupo de Polímeros, Departamento de Física, E.U.P.—FerrolUniversidad de A CoruñaFerrolSpain
  2. 2.Institute for Nanostructures, Nanomodeling and Nanofabrication (I3N), Department of Polymer EngineeringUniversity of MinhoGuimarãesPortugal

Personalised recommendations