Rheologica Acta

, Volume 48, Issue 5, pp 589–596

Rotational and translational diffusivities of germanium nanowires

  • Bennett D. Marshall
  • Virginia A. Davis
  • Doh C. Lee
  • Brian A. Korgel
Original Contribution

Abstract

Understanding the rheological behavior of dilute dispersions of cylindrical nanomaterials in fluids is the first step towards the development of rheological models for these materials. Individual particle tracking was used to quantify the rotational and translational diffusivities of high-aspect-ratio germanium nanowires in alcohol solvents at room temperature. In spite of their long lengths and high aspect ratios, the rods were found to undergo Brownian motion. This work represents the first time that the effects of solvent viscosity and confinement have been directly measured and the results compared to proposed theoretical models. Using viscosity as a single adjustable parameter in the Kirkwood model for Brownian rods was found to be a facile and versatile way of predicting the diffusivities of nanowires across a broad range of length scales.

Keywords

Brownian dynamics Tracking Suspension 

References

  1. Broersma S (1981) Viscous force and torque constants for a cylinder. J Chem Phys 74:6989–6990CrossRefADSGoogle Scholar
  2. Chatterjee T, Khrishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75:114307CrossRefGoogle Scholar
  3. Davis VA et al (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160CrossRefADSGoogle Scholar
  4. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  5. Donald AM, Windle AH (1992) Liquid crystalline polymers. Cambridge University Press, CambridgeGoogle Scholar
  6. Duggal R, Pasquali M (2006) Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys Rev Lett 96:246104PubMedCrossRefADSGoogle Scholar
  7. Fry D et al (2005) Anisotropy of sheared carbon-nanotube suspensions. Phys Rev Lett 95:038304PubMedCrossRefADSGoogle Scholar
  8. Gittes F et al (1993) Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934PubMedCrossRefGoogle Scholar
  9. Hanrath T, Korgel BA (2004) Chemical surface passivation of Ge nanowires. J Am Chem Soc 126:15466–15472PubMedCrossRefGoogle Scholar
  10. Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97:036101PubMedCrossRefADSGoogle Scholar
  11. Hobbie EK, Fry DJ (2007) Rheology of concentrated carbon nanotube suspensions. J Chem Phys 126:124907PubMedCrossRefADSGoogle Scholar
  12. Hunt AJ et al (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781PubMedCrossRefADSGoogle Scholar
  13. Jeffrey DJ, Onishi Y (1981) The slow motion of a cylinder next to a plane wall. Q J Mech Appl Math 34:129–137MATHCrossRefMathSciNetGoogle Scholar
  14. Kirkwood JG, Plock RJ (1956) Non-Newtonian viscoelastic properties of rod-like molecules in solution. J Chem Phys 24:665–669CrossRefADSGoogle Scholar
  15. Li GL, Tang JX (2004) Diffusion of actin filaments within a thin layer between two walls. Phys Rev E 69:061921CrossRefADSGoogle Scholar
  16. Lu X et al (2005) High yield solution-liquid–solid synthesis of germanium nanowires. J Am Chem Soc 127:15718–15719PubMedCrossRefGoogle Scholar
  17. Maeda H, Maeda Y (2007) Direct observation of brownian dynamics of hard colloidal nanorods. Nano Lett 7:3329–3335PubMedCrossRefGoogle Scholar
  18. Mukhija D, Solomon MJ (2007) Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy. J Colloid Interface Sci 314:98–106PubMedCrossRefGoogle Scholar
  19. Murphy CJ et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870PubMedCrossRefGoogle Scholar
  20. Ngo LT et al (2006) Ultimate-strength germanium nanowires. Nano Lett 6:2964–2968PubMedCrossRefGoogle Scholar
  21. Parra-Vasquez ANG et al (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40:4043–4047CrossRefADSGoogle Scholar
  22. Saxton MJ (1997) Single-particle tracking: the distribution of diffusion coefficients. Biophys J 72:1744–1753PubMedCrossRefGoogle Scholar
  23. Smith DA et al (2008) Young’s modulus and size-dependent mechanical quality factor of nanoelectromechanical germanium nanowire resonators. J Phys Chem C 112:10725–10729CrossRefGoogle Scholar
  24. Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheol Acta 46:231–238CrossRefGoogle Scholar
  25. Wang D, Dai H (2006) Germanium nanowires: from synthesis, surface chemistry, and assembly to devices. Appl Phys A Mater Sci Process 85:217–225CrossRefADSGoogle Scholar
  26. Yakobson BI, Couchman LS (2004) Carbon nanotubes: supramolecular mechanics. In: Schwarz JA, Contescu CI, Putyera K (eds) Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, New York, pp 587–601Google Scholar
  27. Yang Y et al (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Physi 99:114307CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bennett D. Marshall
    • 1
  • Virginia A. Davis
    • 1
  • Doh C. Lee
    • 2
  • Brian A. Korgel
    • 2
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA
  2. 2.Department of Chemical Engineering, Texas Materials Institute and Center for Nano- and Molecular Science and TechnologyThe University of Texas at AustinAustinUSA

Personalised recommendations