Rheologica Acta

, Volume 48, Issue 6, pp 641–652 | Cite as

Viscoelastic properties of POSS–styrene nanocomposite blended with polystyrene

  • Maria Eugenia Romero-Guzmán
  • Angel Romo-Uribe
  • B. Manuel Zárate-Hernández
  • Rodolfo Cruz-Silva
Original Contribution


Polyhedral oligomeric silsesquioxane (POSS) are hybrid nanostructures of about 1.5 nm in size. These silicon (Si)-based polyhedral nanostructures are attached to a polystyrene (PS) backbone to produce a polymer nanocomposite (POSS–styrene). We have solution blended POSS–styrene of \(\overline{M}_w =14.5\times 10^3\;\rm{g/mol}\) with commercial polystyrene (PS), \(\overline{M}_w =2.8\times 10^5\;\rm{g/mol}\), and studied the rheological behavior and thermal properties of the neat polymeric components and their blends. The concentration of POSS–styrene was varied from 3 up to 20 wt.%. Thermal analysis studies suggest phase miscibility between POSS–styrene and the PS matrix. The blends displayed linear viscoelastic regime and the time–temperature superposition principle applied to all blends. The flow activation energy of the blends decreased gradually with respect to the matrix as the POSS–styrene concentration increased. Strikingly, it was found that POSS–styrene promoted a monotonic decrease of zero-shear rate viscosity, η0, as the concentration increased. Rheological data analyses showed that the POSS–styrene increased the fractional free volume and decreased the entanglement molecular weight in the blends. In contrast, blending the commercial PS with a PS of \(\overline{M}_w =5\times 10^3\;\rm{g/mol}\) did not show the same lubrication effect as POSS–styrene. Therefore, it is suggested that POSS particles are responsible for the monotonic reduction of zero-shear rate viscosity in the blends.


Polystyrene POSS–styrene nanocomposite Hybrid nanofiller Polymeric nanocomposite Rheology 


  1. Abad MJ, Barral L, Fasce DP, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36:3128–3135CrossRefADSGoogle Scholar
  2. Baldi F, Bignotti F, Fina A, Tabuani D, Riccò T (2007) Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J Appl Polym Sci 105:935–943CrossRefGoogle Scholar
  3. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430CrossRefGoogle Scholar
  4. Batchelor GK (1970) Stress system in a suspension of force-free particles. J Fluid Mech 41:545–570MATHCrossRefADSMathSciNetGoogle Scholar
  5. Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16:99–127CrossRefGoogle Scholar
  6. Ciolacu FCL, Choudhury NR, Dutta N, Kosior E (2007) Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl–POSS. Macromolecules 40:265–272CrossRefADSGoogle Scholar
  7. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  8. Einstein A (1906) On the theory of Brownian movement. Ann Phys (Leipz) 19:371–381CrossRefADSGoogle Scholar
  9. Ellsworth MW, Gin DL (1999) Recent advances in the design and synthesis of polymer–inorganic nanocomposites. Polym News 24:331–341Google Scholar
  10. Feger C, Franke H (1996) In: Ghosh MK, Mittal MK (eds) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  11. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  12. Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci B: Polym Phys 39:2727–2739CrossRefGoogle Scholar
  13. Fu BX, Lee A, Haddad TS (2004) Styrene–butadiene–styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37:5211–5218CrossRefADSGoogle Scholar
  14. Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29:7302–7304CrossRefADSGoogle Scholar
  15. Haddad TS, Stapleton R, Jeon HG, Mather PT, Lichtenhan JD, Phillips S (1999) Nanostructured hybrid organic/inorganic materials. Silsesquioxane modified plastics. Am Chem Soc, Div Polym Chem Polym Prepr 40:496–497Google Scholar
  16. Haddad TS, Mather PT, Jeon HG, Chun SB, Phillips SH (2000) Hybrid inorganic/organic diblock copolymers. Nanostructure in polyhedral oligomeric silsesquioxane polynorbornenes. Mat Res Soc Symp Proc 628:CC2.6.1–CC2.6.7Google Scholar
  17. Han CD, Kim JH (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci B: Polym Phys 25:741–1764CrossRefGoogle Scholar
  18. Hong B, Thoms TPS, Murfee HJ, Lebrun MJ (1997) Highly dendritic macromolecules with core polyhedral silsesquioxane functionalities. Inorg Chem 36:6146–6147CrossRefGoogle Scholar
  19. Joshi M, Butola BS (2004) Polymeric nanocomposites–polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci 44:389–410Google Scholar
  20. Joshi M, Butola BS, Simon G, Kukaleva N (2006) Rheological and viscoelastic behavior of hdpe/octamethyl–poss nanocomposites. Macromolecules 39:1839–1849CrossRefADSGoogle Scholar
  21. Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H, Butler PE, Seifalian AM (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119:1653–1662PubMedCrossRefGoogle Scholar
  22. Kim GM, Qin H, Fang X, Sun FC, Mather PT (2003) Hybrid epoxy-based thermosets based on polyhedraloligosilsesquioxane: cure behavior and toughening mechanisms. J Polym Sci 41:3299–3313Google Scholar
  23. Kim SK, Heo SJ, Koak JY, Lee JH, Lee YM, Chung DJ, Lee JI, Hong SD (2007) A biocompatibility study of a reinforced acrylic-based hybrid denture composite resin with polyhedraloligosilsesquioxane. J Oral Rehab 34:389–395CrossRefGoogle Scholar
  24. Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37:8992–9004CrossRefADSGoogle Scholar
  25. Kopesky ET, Haddad TS, McKinley GH, Cohen RE (2005) Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly(methyl methacrylate) blends. Polymer 46:4743–4752Google Scholar
  26. Kopesky ET, McKinley GH, Cohen RE (2006a) Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 47:299–309CrossRefGoogle Scholar
  27. Kopesky ET, Boyes SG, Treat N, Cohen RE, McKinley GH (2006b) Thermorheological properties near the glass transition of oligomeric poly(methyl methacrylate) blended with acrylic polyhedral oligomeric silsesquioxane nanocages. Rheol Acta 45:971–981CrossRefGoogle Scholar
  28. Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818CrossRefADSGoogle Scholar
  29. Li G, Wang L, Ni Hi, Pittman Charles U Jr (2001a) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154CrossRefGoogle Scholar
  30. Li GZ, Wang L, Toghiani H, Daulton TL, Koyama K, Pittman CU (2001b) Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules 34:8686–8693CrossRefADSGoogle Scholar
  31. Li GZ, Wang L, Toghiani H, Daulton TL, Pittman CU (2002) Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS–styrene copolymers. Polymer 43:4167–4176CrossRefGoogle Scholar
  32. Lichtenhan JD (1996) Silsesquioxane-based polymers. In: Salamone JS (ed) Polymeric materials encyclopedia. CRC, New YorkGoogle Scholar
  33. Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ (1993) Silsesquioxane–siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 26:2141–2142CrossRefADSGoogle Scholar
  34. Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437CrossRefADSGoogle Scholar
  35. Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim HC, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nature Materials 2:762–766PubMedCrossRefADSGoogle Scholar
  36. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) thermolysis of polyhedral oligomeric silsesquioxane (poss) macromers and poss–siloxane copolymers. Chem Mater 8:1250–1259CrossRefGoogle Scholar
  37. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-poss) copolymers. Macromolecules 32:1194–1203CrossRefADSGoogle Scholar
  38. McCusker C, Carrollb JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998CrossRefGoogle Scholar
  39. Pan Q, Fan X, Chen X, Zhou Q (2006) Progress in hybrid materials based on polyhedral oligomeric silsesquioxanes. Prog Chem 18:616–621Google Scholar
  40. Pu K, Fan Q, Wang L, Huang W (2006) Advances in POSS-containing polymers. Prog Chem 18:609–615Google Scholar
  41. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci, Polym Phys. 36:1857–1872CrossRefGoogle Scholar
  42. Siang Soh M, Sellinger A, UJ Yap A (2006) Dental nanocomposites. Curr Nanosci 2:373–381CrossRefADSGoogle Scholar
  43. Tamaki R, Choi J, Laine RM (2000) A polyimide nanocomposite from octa(aminophenyl) silsesquioxane. Chem Mater 15:793–797CrossRefGoogle Scholar
  44. Wu S (1987a) Entanglement between dissimilar chains in compatible polymer blends: poly(methyl methacrylate) and poly(vinylidene fluoride). J Polym Sci B: Polym Phys 25:557–566CrossRefGoogle Scholar
  45. Wu S (1987b) Entanglement, friction, and free volume between dissimilar chains in compatible polymer blends. J Polym Sci B: Polym Phys 25:2511–2529CrossRefGoogle Scholar
  46. Wu J, Haddad TS, Kim GM, Mather PT (2007) Rheological behavior of entangled polystyrene–polyhedral oligosilsesquioxane (POSS) copolymers. Macromolecules 40:544–554CrossRefADSGoogle Scholar
  47. Xu H, Yang B, Wang J, Guang S, Li C (2007) Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. J Polym Sci A: Polym Chem 45:5308–5317CrossRefGoogle Scholar
  48. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442CrossRefGoogle Scholar
  49. Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers: synthesis and characterization. J Am Chem Soc 120:8380–8391CrossRefGoogle Scholar
  50. Zhang W, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, Yang NL, Xu D, Ade H, Rafailovich M, Sokolov J (2002) Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 35:8029–8038CrossRefADSGoogle Scholar
  51. Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034–8039CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Maria Eugenia Romero-Guzmán
    • 1
  • Angel Romo-Uribe
    • 1
  • B. Manuel Zárate-Hernández
    • 1
  • Rodolfo Cruz-Silva
    • 2
  1. 1.Laboratorio de Nanopolímeros y Coloides, Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  2. 2.Centro de Investigación en Ingeniería y Ciencias AplicadasUAEMCuernavacaMéxico

Personalised recommendations