Rheologica Acta

, Volume 48, Issue 8, pp 831–844 | Cite as

Phenomenology and physical origin of shear localization and shear banding in complex fluids

Original Contribution


We review and compare the phenomenological aspects and physical origin of shear localization and shear banding in various material types, namely emulsions, suspensions, colloids, granular materials, and micellar systems. It appears that shear banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity toward two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view, shear banding in these systems has a common physical origin: Two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition, and depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.


Shear banding Yielding Instability 


  1. Acrivos A, Mauri R, Fan X (1993) Shear-induced resuspension in a Couette device. Int J Multiphase Flow 19:797–802MATHCrossRefGoogle Scholar
  2. Ancey C, Coussot P (1999) Transition frictionnelle visqueuse pour une suspension granulaire. CR Acad Sci Paris 327(IIB):515–522 (in French)ADSGoogle Scholar
  3. Bécu L, Grondin P, Colin A, Manneville S (2004) How does a concentrated emulsion flow? Yielding, local rheology, and wall slip. Colloids and surfaces A: physicochem. Eng Aspects 263:146–152CrossRefGoogle Scholar
  4. Bécu L, Manneville S, Colin A (2006) Yielding and flow in adhesive and non-adhesive concentrated emulsions. Phys Rev Lett 96:138302PubMedCrossRefADSGoogle Scholar
  5. Benallal A, Billardon R, Geymonat G (1989) Conditions of bifurcation inside and along boundaries for a class of non-standard materials. CR Acad Sci Paris, Série II 308:893–898 (in French)MATHMathSciNetGoogle Scholar
  6. Berret JF, Roux DC, Porte G, Lindner P (1994) Shear-induced isotropic-to-nematic phase transition in equilibrium polymers. Europhys Lett 25:521–526CrossRefADSGoogle Scholar
  7. Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55:1668–1676CrossRefADSGoogle Scholar
  8. Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P (2003) Wall slip and yielding in pasty materials. J Rheol 1211:47–61Google Scholar
  9. Bird RB, Gance D, Yarusso BJ (1982) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70Google Scholar
  10. Bonn D, Meunier J, Greffier O, Al-Kahwaji A, Kellay H (1998) Bistability in non-Newtonian flow: rheology of lyotropic liquid crystals. Phys Rev E 58:2115–2118CrossRefADSGoogle Scholar
  11. Bonn D, Coussot P, Huynh HT, Bertrand F, Debrégeas G (2002) Rheology of soft-glassy materials. Europhys Lett 59:786–792CrossRefADSGoogle Scholar
  12. Britton MM, Callaghan PT (1997) Two-phase shear band structures at uniform stress. Phys Rev Lett 30:4930–4933CrossRefADSGoogle Scholar
  13. Callaghan PT (2008) Rheo NMR and shear banding. Rheol Acta 47:243–255CrossRefGoogle Scholar
  14. Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56:1869–1878CrossRefADSGoogle Scholar
  15. Cappelaere E, Cressely R, Decruppe JP (1995) Linear and non-linear rheological behaviour of salt-free aqueous CTAB solutions. Colloids and surfaces A. Physicochem Eng Aspects 104:353–374CrossRefGoogle Scholar
  16. Cheng DCH (2003) Characterisation of thixotropy revisited. Rheol Acta 42:372–382CrossRefGoogle Scholar
  17. Cottrell AH (1964) The mechanical properties of matter. Wiley, New YorkGoogle Scholar
  18. Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New YorkCrossRefGoogle Scholar
  19. Coussot P, Leonov AI, Piau JM (1993) Rheology of concentrated dispersed systems in a low molecular weight matrix. J Non-Newton Fluid Mech 46:179–217MATHCrossRefGoogle Scholar
  20. Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002a) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88:218301PubMedCrossRefADSGoogle Scholar
  21. Coussot P, Nguyen QD, Huynh HT, Bonn D (2002b) Avalanche behavior in yield stress fluids. Phys Rev Lett 88:175501PubMedCrossRefADSGoogle Scholar
  22. Coussot P, Tocquer L, Lanos C, Ovarlez G (2008) Macroscopic vs local rheology of yield stress fluids. J Non-Newton Fluid Mech. doi: 10.1016/j.jnnfm.2008.08.003
  23. Da Cruz F (2004) Flow and jamming of dry granular materials. Ph.D. thesis, ENPC, Marne la Vallée (in French)Google Scholar
  24. Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Colloid Polym Sci 273:346–351CrossRefGoogle Scholar
  25. Decruppe JP, Lerouge S, Berret JF (2001) Insight in shear banding under transient flow. Phys Rev E 63:022501CrossRefADSGoogle Scholar
  26. Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281CrossRefGoogle Scholar
  27. Falk ML, Langer JS (1998) Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E 57:7192–7205CrossRefADSGoogle Scholar
  28. Fall A (2008) Ph.D. thesis, Univ. Paris VIGoogle Scholar
  29. Fielding SM (2007) Complex dynamics of shear banded flows. Soft Matter 3:1262–1279CrossRefGoogle Scholar
  30. Fischer E, Callaghan PT (2000) Is birefringence band a shear band? Europhys Lett 50:803–809CrossRefADSGoogle Scholar
  31. Gilbreth C, Sullivan S, Dennin M (2006) Flow transitions in two-dimensional foams. Phys Rev E 74:051406CrossRefADSGoogle Scholar
  32. Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454:84–87PubMedCrossRefADSGoogle Scholar
  33. Hernandez-Acosta S, Gonzalez-Alvarez A, Manero O, Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L (1999) Capillary rheometry of micellar aqueous solutions. J Non-Newton Fluid Mech 85:229–247MATHCrossRefGoogle Scholar
  34. Herzhaft B, Rousseau L, Neau L, Moan M, Bossard F (2002) Influence of temperature and clays/emulsion microstructure on oil-based mud low shear rate rheology. Soc Petrol Eng 77818:1–8Google Scholar
  35. Hill R (1952) On discontinuous plastic states with special references to localized neking in thin sheets. J Mech Phys Solids 1:19CrossRefADSMathSciNetGoogle Scholar
  36. Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2003) Fluctuations in shear-banded flow seen by NMR velocimetry. Europhys Lett 64:274–280CrossRefADSGoogle Scholar
  37. Holmes WM, Callaghan PT, Vlassopoulos D, Roovers J (2004) Shear banding phenomena in ultrasoft colloidal glasses. J Rheol 48:1085–1102CrossRefADSGoogle Scholar
  38. Holmqvist P, Daniel C, Hamley IW, Mingvanish W, Booth C (2002) Inhomogeneous flow in a micellar solution of a diblock copolymer: creep rheometry experiments. Colloids surfaces A. Physicochem Eng Aspects 196:39CrossRefGoogle Scholar
  39. Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94:028301PubMedCrossRefADSGoogle Scholar
  40. Jarny S, Roussel N, Rodts S, Le Roy R, Coussot P (2005) Rheological behavior of cement pastes from MRI velocimetry. Concrete Cement Res 35:1873–1881CrossRefGoogle Scholar
  41. Kabla A, Debrégeas G (2003) Local stress relaxation and shear banding in a dry foam under shear. Phys Rev Lett 90:258303PubMedCrossRefADSGoogle Scholar
  42. Lauridsen J, Chanan G, Dennin M (2004) Velocity profiles in slowly sheared bubble rafts. Phys Rev Lett 93:018303CrossRefADSGoogle Scholar
  43. Lerouge S, Decruppe JP, Berret JF (2000) Correlation between rheological and optical properties of micellar solution under shear banding flow. Langmuir 16:6464–6474CrossRefGoogle Scholar
  44. Liu AJ, Nagel SR (1998) Jamming is not just cool any more. Nature 396:21–22CrossRefADSGoogle Scholar
  45. Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41:901–923CrossRefADSGoogle Scholar
  46. Makhloufi R, Decruppe JP, Aït-Ali A, Cressely R (1995) Rheological study of worm-like micelles undergoing a shear banding flow. Europhys Lett 32:253–258CrossRefADSGoogle Scholar
  47. Manneville S (2008) Recent probes of shear banding. Rheol Acta 47:301–318CrossRefGoogle Scholar
  48. Moller PCF, Rodts S, Michels MAJ, Bonn D (2008) Shear banding and yield stress in soft glassy materials. Phys Rev E 77:041507CrossRefADSGoogle Scholar
  49. Mueth DM, Debregeas GF, Karczmar GS, Eng PJ, Nagel SR, Jaeger HM (2000) Signatures of granular microstructure in dense shear flows. Nature 406:385–389PubMedCrossRefADSGoogle Scholar
  50. Nedderman RM (1992) Statics and kinematics of granular materials. Cambridge University Press, CambridgeGoogle Scholar
  51. Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300CrossRefGoogle Scholar
  52. Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through MRI. J Rheol 50:259–292CrossRefADSGoogle Scholar
  53. Ovarlez G, Rodts S, Coussot P, Goyon J, Colin A (2008) Wide gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78:036307CrossRefADSGoogle Scholar
  54. Partal P, Kowalski AJ, Machin D, Kiratzis N, Berni MG, Lawrence CJ (2001) Rheology and microstructural transitions in the lamellar phase of a cationic surfactant. Langmuir 17:1331–1337CrossRefGoogle Scholar
  55. Pignon F, Magnin A, Piau JM (1996) Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J Rheol 40:573–587CrossRefADSGoogle Scholar
  56. Ragouilliaux A, Herzhaft B, Bertrand F, Coussot P (2006) Flow instability and shear localization in a drilling mud. Rheol Acta 46:261–271CrossRefGoogle Scholar
  57. Ragouilliaux A, Ovarlez G, Shahidzadeh-Bonn N, Herzhaft B, Palermo T, Coussot P (2007) Transition from a simple yield stress fluid to a thixotropic material. Phys Rev E 76:051408CrossRefADSGoogle Scholar
  58. Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by NMR of the thixotropic and yielding behavior of suspensions. J Rheol 46:709–732CrossRefADSGoogle Scholar
  59. Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions-model systems for rheological research. Mol Phys 74:933–973CrossRefADSGoogle Scholar
  60. Rice JR (1976) The localization of deformation. In: Koiter WT (ed) Theoretical and applied mechanics. North Holland, Amsterdam, pp 207–220Google Scholar
  61. Rodts S, Bertrand F, Jarny S, Poullain P, Moucheront P (2004) Recent developments in MRI applications in rheology and fluids mechanics. CR Chimie 7:275–282Google Scholar
  62. Rodts S, Baudez JC, Coussot P (2005) From discrete to continuum flow in foams. Europhys Lett 69:636–642CrossRefADSGoogle Scholar
  63. Rogers SA, Vlassopoulos D, Callaghan PT (2008) Aging, yielding, and shear banding in soft colloidal glasses. Phys Rev Lett 100:128304PubMedCrossRefADSGoogle Scholar
  64. Roussel N, Le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117:85–95MATHCrossRefGoogle Scholar
  65. Roux D, Nallet F, Diat O (1993) Rheology of lyotropic lamellar phases. Europhys Lett 24:53–58CrossRefADSGoogle Scholar
  66. Salmon JB, Colin A, Roux D (2002) Dynamical behaviour of a complex fluid near an out-of-equilibrium transition: approaching simple rheological chaos. Phys Rev E 66:031505CrossRefADSGoogle Scholar
  67. Salmon JB, Manneville S, Colin A (2003) Shear-banding in a lyotropic lamellar phase, part I: time-averaged velocity profiles. Phys Rev E 68:051503CrossRefADSGoogle Scholar
  68. Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear-induced transition near isotropic–nematic transition in equilibrium polymers. Langmuir 10:955–961CrossRefGoogle Scholar
  69. Schofield MA, Wroth CP (1968) Critical state of soil mechanics. McGraw-Hill, LondonGoogle Scholar
  70. Sollich P, Lequeux F, Hebraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023CrossRefADSGoogle Scholar
  71. Tabor D (1991) Gases, liquids and solids, and other states or matter. Cambridge University Press, CambridgeGoogle Scholar
  72. Tanner RI (1988) Engineering rheology. Clarendon Press, OxfordGoogle Scholar
  73. Wassenius H, Callaghan PT (2005) NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system. Eur Phys J E 18:69–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Université Paris-Est, Institut Navier, LMSGCChamps sur MarneFrance

Personalised recommendations