Rheologica Acta

, Volume 48, Issue 8, pp 871–881 | Cite as

New insights on fumed colloidal rheology—shear thickening and vorticity-aligned structures in flocculating dispersions

  • Ajay Singh Negi
  • Chinedum O. OsujiEmail author
Original Contribution


We investigate the rheology of dilute dispersions of fumed colloidal particles with attractive interactions in hydrocarbon liquids. Surprisingly, these systems display shear thickening due to the breakdown of densified flocs and a concomitant increase in the effective volume fraction of the fractal particles in the fluid. We show that this shear thickening is controlled by a critical stress and accompanied by a positive increase in the first normal stress difference, N 1, at the shear thickening transition. This is in contrast to the well-known hydrocluster mechanism of shear thickening in concentrated hard-sphere and repulsive systems. Gel elasticity depends strongly on the stress applied to suspensions in preshear, scaling roughly as \(G'\sim\sigma_{\text{preshear}}^{2}\). We propose a simple model to account for these results in terms of the cluster number density determined by the preshear stress. At low shear rates, vorticity-aligned aggregates are present at \(\dot\gamma\approx 10^0 {\rm{s}}^{-1}\) . In this regime, the system displays a small but noticeable increase in viscosity on increasing shear rate. We investigate the effect of tool roughness and find that wall slip is not responsible for the observed phenomena. Instead, the increase in the apparent viscosity results from increased flow resistance due to the presence of gap-spanning log-like flocs in rolling flow.


Carbon black Colloidal gels Shear thickening Stress relaxation Flocculation Shear-induced structures 



The authors would like to acknowledge Dr. Chanjoong Kim and Prof. David Weitz of Harvard University for fruitful discussions and funding from the National Science Foundation under grant number CBET-0828905.


  1. Bandyopadhyay R, Liang D, Yardimci H, Sessoms DA, Borthwick MA, Mochrie SGJ, Harden JL, Leheny RL (2004) Phys Rev Lett 93:228302PubMedCrossRefADSGoogle Scholar
  2. Barnes H (1989) J Rheol 33:329CrossRefADSGoogle Scholar
  3. Barnes H (1997) J Non-Newton Fluid Mech 70(1–2):1CrossRefADSMathSciNetGoogle Scholar
  4. Bellour M, Knaebel A, Harden JL, Lequeux F, Munch JP (2003) Phys Rev E 67:031405CrossRefADSGoogle Scholar
  5. Bender J, Wagner NJ (1996) J Rheol 40(5):899CrossRefADSGoogle Scholar
  6. Bergstrom L (1998) Colloids Surf A Physicochem Eng Asp 133(1–2):151CrossRefGoogle Scholar
  7. Brady JF, Bossis G (1985) J Fluid Mech 155(JUN):105CrossRefADSGoogle Scholar
  8. Chadwick MD, Goodwin JW, Vincent B, Lawson EJ, Mills PDA (2002) Colloids Surf A Physicochem Eng Asp 196(2–3):235CrossRefGoogle Scholar
  9. Chow MK, Zukoski CF (1995) J Rheol 39(1):15CrossRefADSGoogle Scholar
  10. Coussot P (2007) Soft Matter 3(5):528CrossRefGoogle Scholar
  11. Dullaert K, Mewis J (2005) J Colloid Interface Sci 287(2):542PubMedCrossRefGoogle Scholar
  12. Fischer C, Plummer C, Michaud V, Bourban P, Månson J (2007) Rheol Acta 46(8):1099CrossRefGoogle Scholar
  13. Gopalakrishnan V, Zukoski CF (2004) J Rheol 48(6):1321CrossRefADSGoogle Scholar
  14. Grant MC, Russel WB (1993) Phys Rev E 47(4):2606. doi:10.1103/PhysRevE.47.2606 CrossRefADSGoogle Scholar
  15. Helsen J, Teixeira J (1986) Colloid Poly Sci 264(7):619CrossRefGoogle Scholar
  16. Kaffashi B, Obrien VT, Mackay ME, Underwood SM (1997) J Colloid Interface Sci 187(1):22PubMedCrossRefGoogle Scholar
  17. Kanai H, Amari T (1993) Rheol Acta 32(6):539CrossRefGoogle Scholar
  18. Kanai H, Amari T (1995) Rheol Acta 34(3):303CrossRefGoogle Scholar
  19. Kawaguchi M, Okuno M, Kato T (2001) Langmuir 17(20):6041CrossRefGoogle Scholar
  20. Khan S, Zoeller N (1993) J Rheol 37:1225CrossRefADSGoogle Scholar
  21. Kolli VG, Pollauf EJ, Gadala-Maria F (2002) J Rheol 46(1):321. doi:10.1122/1.1428320 CrossRefADSGoogle Scholar
  22. Kulicke W, Kiss G, Porter R (1977) Rheol Acta 16(5):568CrossRefGoogle Scholar
  23. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, OxfordGoogle Scholar
  24. Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Phys Rev Lett 92:048302PubMedCrossRefADSGoogle Scholar
  25. Osuji CO, Kim C, Weitz DA (2008) Phys Rev E 77(6):060402. doi:10.1103/PhysRevE.77.060402 CrossRefADSGoogle Scholar
  26. Osuji CO, Weitz DA (2008) Soft Matter 4:1388. doi:10.1039/B716324J CrossRefGoogle Scholar
  27. Pignon F, Magnin A, Piau JM (1997) Phys Rev Lett 79:4689CrossRefADSGoogle Scholar
  28. Macosko C (1994) Rheology: principles, measurements and applications. Wiley-VCH, New YorkGoogle Scholar
  29. Maranzano BJ, Wagner NJ (2001) J Rheol 45(5):1205CrossRefADSGoogle Scholar
  30. Melrose JR (2003) Faraday Discuss 123:355PubMedCrossRefGoogle Scholar
  31. Melrose JR, vanVliet JH, Ball RC (1996) Phys Rev Lett 77(22):4660PubMedCrossRefADSGoogle Scholar
  32. Montesi A, Pena AA, Pasquali M (2004) Phys Rev Lett 92:058303PubMedCrossRefADSGoogle Scholar
  33. Raghavan S, Khan S (1995) J Rheol 39(6):1311CrossRefADSGoogle Scholar
  34. Raghavan SR, Khan SA (1997) J Colloid Interface Sci 185(1):57PubMedCrossRefGoogle Scholar
  35. Ramos L, Cipelletti L (2005) Phys Rev Lett 94(15):158301PubMedCrossRefADSGoogle Scholar
  36. Singh A, Nott PR (2000) J Fluid Mech 412:279zbMATHCrossRefADSGoogle Scholar
  37. Singh A, Nott PR (2003) J Fluid Mech 490:293zbMATHCrossRefADSGoogle Scholar
  38. Sonntag RC, Russel WB (1987) J Colloid Interface Sci 113:399CrossRefGoogle Scholar
  39. Smith W, Zukoski C (2004) Langmuir 20(25):11191PubMedCrossRefGoogle Scholar
  40. Walls H, Caines S, Sanchez A, Khan S (2003) J Rheol 47:847CrossRefADSGoogle Scholar
  41. Yoshimura A, Prud’homme RK (1988) J Rheol 32:1CrossRefGoogle Scholar
  42. Zarraga IE, Hill DA, David J, Leighton T (2000) J Rheol 44(2):185. doi:10.1122/1.551083 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringYale UniversityNew HavenUSA

Personalised recommendations