Rheologica Acta

, Volume 48, Issue 8, pp 845–853 | Cite as

Normal and tangential stress fluctuations during jamming

  • Pascal Hébraud
Original Contribution


Under the application of high shear rates, concentrated suspensions of colloidal particles jam. The stress necessary to induce their flow abruptly increases and exhibits very large fluctuations. At the transition, the first normal stress difference increases and develops fluctuations. The sign of the first normal stress difference changes with the volume fraction of the suspension, which becomes dilatant at high volume fraction. I review an experimental study of this jamming transition and experimental evidence of the dilatancy of the suspension.


Suspension Shear thickening Normal stresses 


  1. Awad TS, Rogers MA, Marangoni AG (2004) Scaling behavior of the elastic modulus in colloidal networks of fat crystals. J Phys Chem B 108:171–179CrossRefGoogle Scholar
  2. Ball RC, Melrose JR (1995) Lubrication breakdown in hydrodynamic simulations of concentrated colloids*. Adv Colloid Interface Sci 59:19–30CrossRefGoogle Scholar
  3. Barnes HA (1989) Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in newtonian fluids. J Rheol 33:329–366CrossRefADSGoogle Scholar
  4. Baudez JC, Rodts S, Chateau X, Coussot P (2004) New technique for reconstructing instantaneous velocity profiles from viscometric tests: application to pasty materials. J Rheol 48(1):69–82CrossRefADSGoogle Scholar
  5. Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172:171–184CrossRefGoogle Scholar
  6. Bergenholtz J (2001) Theory of rheology of colloidal dispersions. Curr Opin Colloid Interface Sci 6:484–488CrossRefGoogle Scholar
  7. Bergenholtz J, Brady JF, Vicic M (2002) The non-newtonian rheology of dilute colloidal suspensions. J Fluid Mech 456:239–275zbMATHCrossRefADSGoogle Scholar
  8. Bertrand E, Bibette J, Schmitt V (2002) From shear-thickening to shear-induced jamming. Phys Rev E 66:060401(R)CrossRefADSGoogle Scholar
  9. Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AIChE 36:321–332CrossRefGoogle Scholar
  10. Brady JF, Bossis G (1985) The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulations. J Fluid Mech 155:105CrossRefADSGoogle Scholar
  11. Brady JF, Vicic M (1995) Normal stresses in colloidal dispersion. J Rheol 39(3):545–566CrossRefADSGoogle Scholar
  12. Brady JF, Morris JF (1997) Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J Fluid Mech 348:103–139zbMATHCrossRefADSGoogle Scholar
  13. Cates ME, Wittmer JP, Bouchaud J-P, Claudin P (1998) Jamming, force chains, and fragile matter. Phys Rev Lett 81(9):1841–1844CrossRefADSGoogle Scholar
  14. Coppersmith SN, Liu C-H, Majumdar S, Narayan O, Witten TA (1996) Model for force fluctuations in bead packs. Phys Rev E 53(5):4673–4685CrossRefADSGoogle Scholar
  15. Dasan J, Ramamohanan TR, Singh A, Nott PR (2002) Stress fluctuations in sheared stokesian suspensions. Phys Rev E 66:021409CrossRefADSGoogle Scholar
  16. Dhont JKG (1996) An introduction to dynamics of colloids. Elsevier, AmsterdamGoogle Scholar
  17. Fagan ME, Zukoski CF (1997) The rheology of charge stabilized silica suspensions. J Rheol 41(2):373–397CrossRefADSGoogle Scholar
  18. Farr RS, Melrose JR, Ball RC (1997) Kinetic theory of jamming in hard-sphere startup flows. Phys Rev E 55(6):7203–7211CrossRefADSGoogle Scholar
  19. Fielding SF, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92(8):084502PubMedCrossRefADSGoogle Scholar
  20. Franks GV, Zhou Zh, Duin NJ, Boger DV (2000) Effect of interparticle forces on shear thickening of oxide suspensions. J Rheol 44(4):759–779CrossRefADSGoogle Scholar
  21. Freundlich H, Röder HL (1938) Dilatant flow of colloidal suspensions. Trans Faraday Soc 34:308CrossRefGoogle Scholar
  22. Frith WJ, d’Haene P, Buscall R, Mewis J (1996) Shear thickening in model suspensions of sterically stabilized particles. J Rheol 40(4):531–548CrossRefADSGoogle Scholar
  23. Gadala-Maria F, Acrivos A (1980) Shear-induced structure in a concentrated suspension of solid spheres. J Rheol 24(6):799–814CrossRefADSGoogle Scholar
  24. Giri Koli V, Pollauf EJ, Gadala-Maria F (2002) Transient normal stress response in a concentrated suspension of spherical particles. J Rheol 46(1):321–334CrossRefADSGoogle Scholar
  25. Haan JJ, Steif PS (1998) Particle-phase pressure in a slow shearing flow based on the numerical simulation of a planar suspension of rough contacting cylinders. J Rheol 42(4):891–916CrossRefADSGoogle Scholar
  26. Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. i. Observation of a flow instability. Trans Soc Rheol 16(1):155–173CrossRefGoogle Scholar
  27. Hoffman RL (1974) Discontinuous and dilatant viscosity behavior in concentrated suspensions. ii. Theory and experimental tests. J Colloid Interface Sci 46:491–506CrossRefGoogle Scholar
  28. Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42(1):111–123CrossRefADSGoogle Scholar
  29. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, OxfordGoogle Scholar
  30. Laun HM (1994) Normal stresses in extremely shear-thickening polymer dispersions. J Non-Newtonian Fluid Mech 54:87–108CrossRefGoogle Scholar
  31. Lootens D, van Damme H, Hébraud P (2003) Giant stress fluctuations near the jamming transition. Phys Rev Lett 90(17):178301PubMedCrossRefADSGoogle Scholar
  32. Lootens D, van Damme H, Hémar Y, Hébraud P (2005) Dilatant flow of concentrated suspensions of rough particles. Phys Rev Lett 95(26):268302PubMedCrossRefADSGoogle Scholar
  33. Maranzano BJ, Wagner NJ (2001a) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45(5):1205–1222CrossRefADSGoogle Scholar
  34. Maranzano BJ, Wagner NJ (2001b) The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J Chem Phys 114(23):10514–10527CrossRefADSGoogle Scholar
  35. Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302CrossRefADSGoogle Scholar
  36. Melrose JR, Ball RC (2004a) Continuous shear thickening transitions in model concentrated colloids. J Rheol 48(5):937–960CrossRefADSGoogle Scholar
  37. Melrose JR, Ball RC (2004b) ’Contact networks’ in continuously shear thickening colloids. J Rheol 48(5):961–978CrossRefADSGoogle Scholar
  38. Melrose JR, van Vliet JH, Ball RC (1996) Continuous shear thickening and colloid surfaces. Phys Rev Lett 77(22):4660–4663PubMedCrossRefADSGoogle Scholar
  39. Miller B, O’Hern C, Behringer RP (1996) Stress fluctuations for continuously sheared granular media. Phys Rev Lett 77(15):3110–3113PubMedCrossRefADSGoogle Scholar
  40. Panine P, Narayanan T, Vermant J, Mewis J (2002) Structure and rheology during shear-induced crystallization of a latex suspension. Phys Rev E 66:022401CrossRefADSGoogle Scholar
  41. Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41(2):197–218CrossRefADSGoogle Scholar
  42. Salmon J-B, Manneville S, Colin A (2003a) Shear banding in a lyotropic lamellar phase. i. Time-averaged velocity fluctuations. Phys Rev E 68:051503CrossRefADSGoogle Scholar
  43. Salmon J-B, Manneville S, Colin A (2003b) Shear banding in a lyotropic lamellar phase. ii. Temporal fluctuations. Phys Rev E 68:051504CrossRefADSGoogle Scholar
  44. Schwarz OJ, Horie Y, Shearer M (1998) Discrete element investigation of stress fluctuation in granular flow at high strain rates. Phys Rev E 57(2):2053–2061CrossRefADSGoogle Scholar
  45. Serra T, Casamitjana X (1998) Modelling the aggregation and break-up of fractal aggregates in a shear flow. Appl Sci Res 59:255–268zbMATHCrossRefGoogle Scholar
  46. Silbert LE, Farr RS, Melrose JR, Ball RC (2004) Stress distributions in flowing aggregated colloidal suspensions. J Chem Phys 111(10):4780–4789CrossRefADSGoogle Scholar
  47. Singh A, Nott PR (2003) Experimental measurements of the normal stresses in sheared stokesian suspensions. J Fluid Mech 490:293–320zbMATHCrossRefADSGoogle Scholar
  48. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  49. Tolpekin VA, Duits MHG, van den Ende D, Mellema J (2004) Aggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopy. Langmuir 20:2614–2617PubMedCrossRefGoogle Scholar
  50. Umeya K, Kanno T (1979) Effect of floculation on the dilatant flow for aqueous suspensions of titanium dioxydes. J Rheol 23:123CrossRefADSGoogle Scholar
  51. Varadan P, Solomon MJ (2003) Direct visualization of flow-induced microstructure in dense colloidal gels by confocal laser scanning microscopy. J Rheol 47(4):943–968CrossRefADSGoogle Scholar
  52. Vermant J (2001) Large-scale structures in sheared colloidal dispersions. Curr Opin Colloid Interface Sci 6:489–495CrossRefGoogle Scholar
  53. Versmold H, Musa S, Bierbaum A (2002) Concentrated colloidal dispersions: on the relation of rheology with small angle x-ray and neutron scattering. J Chem Phys 116(6):2658–2662CrossRefADSGoogle Scholar
  54. Wilson HJ, Davis RH (2002) Shear stress of a monolayer of rough spheres. J Fluid Mech 452:425–441zbMATHCrossRefADSMathSciNetGoogle Scholar
  55. Zarraga IE, Leighton DT (2001) Normal stress and diffusion in a dilute suspension of hard spheres undergoing simple shear. Phys Fluids 13(3):565–577CrossRefADSMathSciNetGoogle Scholar
  56. Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of noncolloidal spheres in newtonian fluids. J Rheol 44(2):185–220CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.IPCMS, CNRS, UMR7504StrasbourgFrance

Personalised recommendations