Rheologica Acta

, Volume 48, Issue 1, pp 109–115 | Cite as

Holographic microrheology of polysaccharides from Streptococcus mutans biofilms

  • Fook Chiong Cheong
  • Simone Duarte
  • Sang-Hyuk Lee
  • David G. Grier
Original Contribution

Abstract

We use three-dimensional holographic particle tracking to perform microrheological measurements of model gelled media, including the polysaccharide pellicle of dental biofilms created by the common cariogenic oral pathogen Streptococcus mutans. Nanometer-resolution video-rate holographic tracking of embedded colloidal spheres provides accurate measurements of the gels’ complex viscoelastic moduli, including insights into these properties’ heterogeneity. When applied to polysaccharides of S. mutans biofilms, these techniques promise quantitative microscopic assays for candidate therapeutic agents against cariogenic dental biofilms.

Keywords

Video holographic microscopy Microrheology Biofilms Polysaccharide gel Streptococcus mutans 

References

  1. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  2. Cense AW, Peeters EAG, Gottenbos B, Baaijens FPT, Nuijs AM, van Dongen MEH (2006) Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Methods 67:463–472CrossRefGoogle Scholar
  3. Chen DT, Weeks ER, Crocker JC, Islam MF, Verma R, Gruber J, Levine AJ, Lubensky TC, Yodh AG (2003) Rheological microscopy: local mechanical properties from microrheology. Phys Rev Lett 90:108301CrossRefGoogle Scholar
  4. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  5. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310CrossRefGoogle Scholar
  6. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891CrossRefGoogle Scholar
  7. Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP (2000) Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res 34:491–497CrossRefGoogle Scholar
  8. Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 65:051505CrossRefGoogle Scholar
  9. Desprat N, Guiroy A, Asnacios A (2006) Microplates-based rheometer for a single living cell. Rev Sci Instrum 77:055111CrossRefGoogle Scholar
  10. Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, Koo H (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett 257:50–56CrossRefGoogle Scholar
  11. Duarte S, Koo H, Bowen WH, Hayacibara MF, Cury JA, Ikegaki M, Rosalen PL (2003) Effect of a novel type of propolis and its chemical fractions on glucsyltransferases and on growth and adherence of mutans streptococci. Biol Pharm Bull 26:527–531CrossRefGoogle Scholar
  12. Dufresne ER, Altman D, Grier DG (2001) Brownian dynamics of a sphere in a slit pore. Europhys Lett 53:264–270CrossRefGoogle Scholar
  13. Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79:3286–3289CrossRefGoogle Scholar
  14. Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotech Bioeng 80:289–296CrossRefGoogle Scholar
  15. Koo H, Hayacibara MF, Cury BD, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–789CrossRefGoogle Scholar
  16. Korstgens V, Flemming HC, Wingender J, Borchard W (2001) Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods 46:9–17CrossRefGoogle Scholar
  17. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567Google Scholar
  18. Lee SH, Grier DG (2007) Holographic microscopy of holographically trapped three-dimensional structures. Opt Express 15:1505–1512CrossRefGoogle Scholar
  19. Lee SH, Roichman Y, Yi GR, Kim SH, Yang SM, van Blaaderen A, van Oostrum P, Grier DG (2007) Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express 15:18275–18282CrossRefGoogle Scholar
  20. Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378CrossRefGoogle Scholar
  21. Mason TG, Dhople A, Wirtz D (1997) Concentrated DNA rheology and microrheology. In: MRS proceedings on statistical mechanics in physics and biology, vol 463. Materials Research Society, Pittsburgh, pp 153–158Google Scholar
  22. Mason TG, Ganesan K, van Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285CrossRefGoogle Scholar
  23. Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253CrossRefGoogle Scholar
  24. Meiners JC, Quake SR (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214CrossRefGoogle Scholar
  25. Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134–1137CrossRefGoogle Scholar
  26. Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638CrossRefGoogle Scholar
  27. Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P (2004) Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93:098102CrossRefGoogle Scholar
  28. Sheng J, Malkiel E, Katz J (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45:3893–3901CrossRefGoogle Scholar
  29. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotech Bioeng 65:83–92CrossRefGoogle Scholar
  30. Towler BW, Rupp CJ, Cunningham AB, Stoodley P (2003) Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19:279–285CrossRefGoogle Scholar
  31. Vinogradov AM, Winston M, Rupp CJ, Stoodley P (2004) Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms 1:49–56CrossRefGoogle Scholar
  32. Wloka M, Rehage H, Flemming HC, Wingender J (2006) Structure and rheological behavior of the extracellular polymeric substance network of mucoid Pseudomonas aeruginosa biofilms. Biofilms 2:275–283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fook Chiong Cheong
    • 1
  • Simone Duarte
    • 2
  • Sang-Hyuk Lee
    • 3
  • David G. Grier
    • 1
  1. 1.Department of Physics and Center for Soft Matter ResearchNew York UniversityNew YorkUSA
  2. 2.Department of Basic Science and Craniofacial Biology, College of DentistryNew York UniversityNew YorkUSA
  3. 3.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations