Rheologica Acta

, Volume 47, Issue 9, pp 989–997 | Cite as

Elasticity and dynamics of particle gels in non-Newtonian melts

  • Giovanni Romeo
  • Giovanni Filippone
  • Alberto Fernández-Nieves
  • Pietro Russo
  • Domenico Acierno
Original Contribution


We investigate the relation between the structure and the viscoelastic behavior of a model polymer nanocomposite system based on a mixture of titanium dioxide (TiO2) nanoparticles and polypropylene. Above a critical volume fraction, Φ c, the elasticity of the hybrids dramatically increases, and the frequency dependence of the elastic and viscous moduli reflects the superposition of the independent responses of the suspending polymer melt and of an elastic particle network. In addition, the elasticity of the hybrids shows critical behavior around Φ c. We interpret these observations by hypothesizing the formation of a transient network, which forms due to crowding of particle clusters. Consistent with this interpretation, we find a long-time, Φ-dependent, structural relaxation, which emphasizes the transient character of the structure formed by the particle clusters. For times below this characteristic relaxation time, the elasticity of the network is Φ-independent and reminiscent of glassy behavior, with the elastic modulus, G, scaling with frequency, ω, as Gω 0.3. We expect that our analysis will be useful for understanding the behavior of other complex fluids where the elasticity of the components could be superimposed.


Linear viscoelasticity Polymer nanohybrid Filler network 



The authors acknowledge Prof. Dave Weitz for useful discussions. G. R. also gratefully acknowledges his hospitality at Harvard University. A.F-N. thanks Ministerio de Educacion y Ciencia (DPI2008-06624-C03-03) and University of Almeria (leave of absence).


  1. Arbabi S, Sahimi M (1993) Mechanics of disordered solids. I. Percolation on elastic networks with central forces. Phys Rev Lett 47:695–702Google Scholar
  2. Barnes HA (2003) A review of the rheology of filled viscoelastic systems. In: Binding DM, Walters K (eds) Rheology reviews 2003, vol 1. British Society of Rheology, Aberystwyth, Wales, pp 1–36Google Scholar
  3. Buscall R, McGowan IJ, Mumme-Young CA (1990) Rheology of weakly interacting colloidal particles at high concentration. Faraday Discuss Chem Soc 90:115–127CrossRefGoogle Scholar
  4. Cipelletti L, Manley S, Ball RC, Weitz DA (2000) Universal aging features in restructuring of fractal colloidal gels. Phys Rev Lett 84(10):2275–2278CrossRefGoogle Scholar
  5. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New YorkGoogle Scholar
  6. Doremus P, Piau JM (1991) Yeld stress fluid. Structural model and transient shear flow behaviour. J Non-Newtonian Fluid Mech 39:335–352CrossRefGoogle Scholar
  7. Gleissle W, Hochstein B (2003) Validity of the Cox–Merz rule for concentrated suspensions. J Rheol 47(4):897–910CrossRefGoogle Scholar
  8. Inoubli R, Dagréou S, Lapp A, Billon L, Peyrelasse J (2006) Nanostructure and mechanical properties of polybutylacrylate filled with grafted silica particles. Langmuir 22:6683–6689CrossRefGoogle Scholar
  9. Israelachvili J (1985) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  10. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52:1891–1894CrossRefGoogle Scholar
  11. Krall HA, Weitz DA (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80:778–781CrossRefGoogle Scholar
  12. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  13. Leonov AI (1990) On the rheology of filled polymers. J Rheol 34(7):1039–1067CrossRefGoogle Scholar
  14. Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett 75:2770–2773CrossRefGoogle Scholar
  15. Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38(6):1769–1795CrossRefGoogle Scholar
  16. Mead DW (1996) Component predictions and the relaxation spectrum of the double reptation mixing rule for polydisperse linear flexible polymers. J Rheol 40(4):633–662CrossRefGoogle Scholar
  17. Plischke M, Vernon DC, Joós B, Zhou Z (1999) Entropic rigidity of randomly diluted two-and three-dimensional networks. Phys Rev E 60:3129–3135CrossRefGoogle Scholar
  18. Potanin AA, De Rooij R, van den Ende D, Mellema J (1995) Microrheological modeling of weakly aggregated dispersions. J Chem Phys 102:5845–5853CrossRefGoogle Scholar
  19. Prasad V, Trappe V, Dinsmore AD, Segrè PN, Cipelletti L, Weitz DA (2003) Universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss 123:1–12CrossRefGoogle Scholar
  20. Pusey PN, van Mengen W (1986) Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342CrossRefGoogle Scholar
  21. Ren J, Silva AS, Krishnamoorti R (2000) Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites. Macromolecules 33(10):3739–3746CrossRefGoogle Scholar
  22. Rueb CJ, Zukoski CF (1997) Viscoelastic properties of colloidal gels. J Rheol 41:197–218CrossRefGoogle Scholar
  23. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, CambridgeGoogle Scholar
  24. Saint-Michel F, Pignon F, Magnin A (2003) Fractal behavior and scaling law of hydrophobic silica in polyol. J Colloid Interface Sci 267(2):314–319CrossRefGoogle Scholar
  25. Segrè PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86:6042–6045CrossRefGoogle Scholar
  26. Shah SA, Chen YL, Schweizer KS, Zukoski F (2003) Viscoelasticity and rheology of depletion flocculated gels and fluids. J Chem Phys 119:8747–8760CrossRefGoogle Scholar
  27. Shih WH, Shih WY, Kim SI, Liu J, Aksay IA (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42:4772–4779CrossRefGoogle Scholar
  28. Shikata T, Pearson DS (1994) Viscoelastic behavior of concentrated spherical suspensions. J Rheol 38(3):601–616CrossRefGoogle Scholar
  29. Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Rheology of soft glassy materials. Phys Rev Lett 78:2020–2023CrossRefGoogle Scholar
  30. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/play hybrid materials. Macromolecules 34(6):1864–1872CrossRefGoogle Scholar
  31. Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  32. Surve M, Pryamitsyn V, Ganesan V (2006) Universality in structure and elasticity of polymer-nanoparticle gels. Phys Rev Lett 96(17):17780, 51–54CrossRefGoogle Scholar
  33. Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449–452CrossRefGoogle Scholar
  34. Trappe V, Sandkuhler P (2004) Colloidal gels—low-density disordered solid-like states. Curr Opin Colloid Interface Sci 8:494–500CrossRefGoogle Scholar
  35. Trappe V, Prasad V, Cipelletti L, Segrè PN, Weitz DA (2001) Jamming phase diagram for attractive particles. Nature 411:772–775CrossRefGoogle Scholar
  36. Tuteja A, Mackay M, Hawker CJ, Van Horn B (2005) Effect of ideal, organic nanoparticles on the flow properties of linear polymers: non-Einstein-like behavior. Macromolecules 38(19):8000–8011CrossRefGoogle Scholar
  37. van Megen W, Underwood SM (1994) Glass transition in colloidal hard spheres: measurements and mode-coupling theory analysis of the coherent intermediate scattering functions. Phys Rev E 49:4206–4220CrossRefGoogle Scholar
  38. Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW (2007) Quantifying dispersion of layered nanocomposites via melt rheology. J Rheol 51:429–450CrossRefGoogle Scholar
  39. Wolthers W, Van den Ende D, Breedveld V, Duits MHG, Potanin AA, Wientjes RHW, Mellema J (1997) Linear viscoelastic behavior of aggregated colloidal dispersions. Phys Rev E 56(5):5726–5733CrossRefGoogle Scholar
  40. Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17(4):1030–1036CrossRefGoogle Scholar
  41. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nano composites: structure and rheology. Langmuir 18(26):10435–10442CrossRefGoogle Scholar
  42. Zhu Z, Thompson T, Wang S-Q, von Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Giovanni Romeo
    • 1
  • Giovanni Filippone
    • 1
  • Alberto Fernández-Nieves
    • 2
  • Pietro Russo
    • 3
  • Domenico Acierno
    • 1
  1. 1.Department of Materials Engineering and ProductionUniversity of Napoli Federico IINaplesItaly
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Institute of Chemistry and Technology of PolymersNational Council of ResearchNaplesItaly

Personalised recommendations