Rheologica Acta

, Volume 47, Issue 5–6, pp 591–599 | Cite as

Entangled polymer orientation and stretch under large step shear deformations in primitive chain network simulations

  • Kenji Furuichi
  • Chisato Nonomura
  • Yuichi Masubuchi
  • Hiroshi Watanabe
  • Giovanni Ianniruberto
  • Francesco Greco
  • Giuseppe Marrucci
Original Contribution


Orientation and stretch of entangled polymers under large step shear deformations were investigated through primitive chain network simulations. In the simulations, entangled polymer dynamics is described by 3D motion of entanglements, 1D sliding of monomers along the chain, and creation/destruction of entanglements described by hooking/unhooking with surrounding chains at chain ends. In addition to the conventionally proposed relaxation mechanisms that are reptation, contour length fluctuations, and constraint release (both thermal and convective), the simulations also account for force balance among entanglement strands converging to an entanglement node, and nodes also fluctuate in space. Nonlinear step strain data for monodisperse polystyrene melts (Ferri and Greco, Macromolecules, 37:5931, 2006) were quantitatively reproduced by using the same two molecular-weight-independent parameters already adopted by Masubuchi et al. (J Non-Newt Fluid Mech, 149:87, 2008) to fit linear viscoelastic data of several monodisperse polystyrene melts. Analysis of the orientation tensor and of the chain stretch ratio indicates that the segment orientation and stretch realized in the simulation are quantitatively described by a simple three-chain model (Marrucci et al., Macromol Symp, 158:57, 2000a).


Primitive chain network Three-chain model Force balance Step shear deformation Chain stretch Chain orientation 



Two of the authors (KF and CN) wish to acknowledge TOYOBO Co., Ltd. for the permission to publish this paper.


  1. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  2. Ferri D, Greco F (2006) Macromolecules 39:5931–5938CrossRefGoogle Scholar
  3. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, NewYorkGoogle Scholar
  4. Furuichi K, Nonomura C, Masubuchi Y, Ianniruberto G, Greco F, Marrucci G (2007) J Soc Rheol Jpn 35:73–77CrossRefGoogle Scholar
  5. Graessley WW (1982) Adv Polym Sci 47:68–117Google Scholar
  6. Greco F (2004) Macromolecules 37:10079–10088CrossRefGoogle Scholar
  7. Ianniruberto G, Marrucci G (2001) J. Rheol 45:1305–1318CrossRefGoogle Scholar
  8. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, New YorkGoogle Scholar
  9. Marrucci G (1996) J Non-Newtonian Fluid Mech 62:279–289CrossRefGoogle Scholar
  10. Marrucci G, Greco F, Ianniruberto G (2000a) Macromol Symp 158:57–64CrossRefGoogle Scholar
  11. Marrucci G, Greco F, Ianniruberto G (2000b) J Rheol 44:845–854CrossRefGoogle Scholar
  12. Masubuchi Y, Takimoto JI, Koyama K, Ianniruberto G, Marrucci G, Greco F (2001) J Chem Phys 115:4387–4394CrossRefGoogle Scholar
  13. Masubuchi Y, Ianniruberto G, Greco F, Marrucci G (2003) J Chem Phys 119:6925–6930CrossRefGoogle Scholar
  14. Masubuchi Y, Ianniruberto G, Greco F, Marrucci G (2008) J Non-Newtonian Fluid Mech 149:87–92Google Scholar
  15. McLeish TCB (2002) Adv Phys 51:1379–1527CrossRefGoogle Scholar
  16. Mead DW, Larson RG, Doi M (1998) Macromolecules 31:7895–7914CrossRefGoogle Scholar
  17. Menezes EV, Graessley WW (1982) J Polym Sci Polym Sci Polym Phys Ed 20:1817–1833CrossRefGoogle Scholar
  18. Peters EAJF, van Heel APG, Hulsen MA, van den Brule BHAA (2000) J Rheol 44:845–854CrossRefGoogle Scholar
  19. Schieber JD (2003) J Chem Phys 118:5162–5166CrossRefGoogle Scholar
  20. Watanabe H (1999) Prog Polym Sci 24:1253–1403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Kenji Furuichi
    • 1
  • Chisato Nonomura
    • 1
  • Yuichi Masubuchi
    • 2
  • Hiroshi Watanabe
    • 3
  • Giovanni Ianniruberto
    • 4
  • Francesco Greco
    • 5
  • Giuseppe Marrucci
    • 4
  1. 1.TOYOBO Co., LTD.OtsuJapan
  2. 2.Japan Science and Technology AgencyInstitute for Chemical Research, Kyoto UniversityUjiJapan
  3. 3.Institute for Chemical ResearchKyoto UniversityUjiJapan
  4. 4.Dipartimento di Ingegneria ChimicaUniversità degli studi di Napoli “Federico II”NaplesItaly
  5. 5.Istituto di Ricerche sulla Combustione (IRC)CNRNaplesItaly

Personalised recommendations