Rheologica Acta

, Volume 44, Issue 3, pp 319–330 | Cite as

A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching

  • Seung Joon Park
  • Sachin Shanbhag
  • Ronald G. Larson
Original Contribution


The “hierarchical model” proposed earlier [Larson in Macromolecules 34:4556–4571, 2001] is herein modified by inclusion of early time fluctuations and other refinements drawn from the theories of Milner and McLeish for more quantitative prediction. The hierarchical model predictions are then compared with experimental linear viscoelastic data of well-defined long chain branched 1,4-polybutadienes and 1,4-polyisoprenes using a single set of parameter values for each polymer, which are obtained from experimental data for monodisperse linear and star polymers. For a wide range of monodisperse branched polymer melts, the predictions of the hierarchical model for monodisperse melts are very similar to those of the Milner–McLeish theories, and agree well with experimental data for many, but not all, of the branched polymer samples. Since the modified hierarchical model accounts for arbitrary polydispersity in molecular weight and branching distributions, which is not accounted for in the Milner–McLeish theories, the hierarchical algorithm is a promising one for predicting the relaxation of general mixtures of branched polymers.


Long-chain branched polymers Dynamic dilution theory Tube model Linear viscoelastic properties Polydispersity 



We are grateful to the National Science Foundation, DMR-0096688 and DMR-0072101 for financial support.


  1. 1.
    Crosby BJ, Mangnus M, de Groot W, Daniels R, McLeish TCB (2002) Characterization of long chain branching: dilution rheology of industrial polyethylenes. J Rheol 46:401–426CrossRefGoogle Scholar
  2. 2.
    Daniels DR, McLeish TCB, Crosby BJ, Young RN, Fernyhough CM (2001) Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34:7025–7033CrossRefGoogle Scholar
  3. 3.
    Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  4. 4.
    Fettets LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26:647–654Google Scholar
  5. 5.
    Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647Google Scholar
  6. 6.
    Frischknecht AL, Milner ST (2000) Self-Diffusion with dynamic dilution in star polymer melts. Macromolecules 33:9764–9768CrossRefGoogle Scholar
  7. 7.
    Frischknecht AL, Milner ST, Pryke A, Young RN, Hawkins R, McLeish TCB (2002) Rheology of three-arm asymmetric star polymer melts. Macromolecules 35:4801–4820CrossRefGoogle Scholar
  8. 8.
    Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41:232–244CrossRefGoogle Scholar
  9. 9.
    Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRefGoogle Scholar
  10. 10.
    Gotro JT, Graessley WW (1984) Model hydrocarbon polymers: rheological properties of linear polyisoprenes and hydrogenated polyisoprenes. Macromolecules 17:2767–2775Google Scholar
  11. 11.
    Janzen J, Colby RH (1999) Diagnosing long-chain branching in polyethylenes. J Mol Struct 485–486:569–583CrossRefGoogle Scholar
  12. 12.
    Kratochvil P (2000) Characterization of branched polymers. Macromol Symp 152:279–287CrossRefGoogle Scholar
  13. 13.
    Larson RG (2001) Combinatorial rheology of branched polymer melts. Macromolecules 34:4556–4571CrossRefGoogle Scholar
  14. 14.
    Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818CrossRefGoogle Scholar
  15. 15.
    McLeish TCB (2003) Why, and when, does dynamic tube dilation work for stars? J Rheol 47:177–198CrossRefGoogle Scholar
  16. 16.
    McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:82–112CrossRefGoogle Scholar
  17. 17.
    McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottiere B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron-scattering. Macromolecules 32:6734–6758CrossRefGoogle Scholar
  18. 18.
    Milner ST, McLeish TCB (1997) Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30:2159–2166CrossRefGoogle Scholar
  19. 19.
    Milner ST, McLeish TCB (1998) Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett 81:725–728CrossRefGoogle Scholar
  20. 20.
    Milner ST, McLeish TCB, Young RN, Hakiki A, Johnson JM (1998) Dynamic dilution, constraint-release, and star-linear blends. Macromolecules 31:9345–9353CrossRefGoogle Scholar
  21. 21.
    Park SJ, Larson RG (2003) Dilution exponent in the dynamic dilution theory for polymer melts. J Rheol 47:199–211CrossRefGoogle Scholar
  22. 22.
    Park SJ, Larson RG (2004) Tube dilation and reptation in binary blends of monodisperse linear polymers. Macromolecules 37:597–604CrossRefGoogle Scholar
  23. 23.
    Pearson DS, Mueller SJ, Fetters LJ, Hadjichristidis NJ (1983) Comparison of the rheological properties of linear and star-branched polyisoprenes in shear and elongational flow. Polym Sci Polym Phys Ed 21:2287–2298CrossRefGoogle Scholar
  24. 24.
    Raju VR, Menezes EV, Marin G, Graessley WW (1981) Concentration and molecular weight dependence of viscoelastic properties in linear and star polymers. Macromolecules 14:1668–1676Google Scholar
  25. 25.
    Randall JC (1989) A review of high-resolution liquid C-13 nuclear magnetic-resonance characterizations of ethylene based polymers. J Macromol Sci Rev Macromol Chem Phys C29:201–317Google Scholar
  26. 26.
    Roovers J (1985) Properties of the plateau zone of star-branched polybutadienes and polystyrenes. Polymer 26:1091–1095CrossRefGoogle Scholar
  27. 27.
    Roovers J (1987) Tube renewal in the relaxation of 4-arm star polybutadienes in linear polybutadienes. Macromolecules 20:148–152Google Scholar
  28. 28.
    Shanbhag S, Larson RG (2004) A slip-link model of branch-point motion in entangled polymers. Macromolecules (in press)Google Scholar
  29. 29.
    Shroff RN, Mavridis H (2001) Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes. Macromolecules 34:7362–7367CrossRefGoogle Scholar
  30. 30.
    Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643Google Scholar
  31. 31.
    Struglinski MJ, Graessley WW, Fetters LJ (1988) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 3. Experimental observations on binary mixtures of linear and star polybutadienes. Macromolecules 21:783–789Google Scholar
  32. 32.
    Watanabe H, Matsumiya Y, Inoue T (2002) Dielectric and viscoelastic relaxation of highly-entangled star polyisoprene; quantitative test of tube dilation model. Macromolecules 35:2339–2357CrossRefGoogle Scholar
  33. 33.
    Wood-Adams PM, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 33:7481–7488CrossRefGoogle Scholar
  34. 34.
    Wood-Adams PM, Dealy JM, de Groot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499CrossRefGoogle Scholar
  35. 35.
    Ye X, Larson RG, Pattamaprom C, Sridhar T (2003) Extensional properties of monodisperse and bidisperse polystyrene solutions. J Rheol 47:443–468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Seung Joon Park
    • 1
    • 2
  • Sachin Shanbhag
    • 1
  • Ronald G. Larson
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Corporate Research & DevelopmentLG Chem, Ltd./Research ParkDaejeonKorea

Personalised recommendations