Rheologica Acta

, Volume 44, Issue 2, pp 174–187 | Cite as

Non Linear Rheology for Long Chain Branching characterization, comparison of two methodologies : Fourier Transform Rheology and Relaxation.

Original paper

Abstract

In this study we compare three rheological ways for Long Chain Branching (LCB) characterization of a broad variety of linear and branched polyethylene compounds. One method is based on dynamical spectrometry in the linear domain and uses the van Gurp Palmen plot. The two other methods are both based on non linear rheology (Fourier Transform Rheology (FTR) and chain orientation/relaxation experiments). FTR consists in the Fourier analysis of the shear stress signal due to large oscillatory shear strains. In the present work we focus on the third and the fifth harmonics of the shear stress response. Chain orientation/relaxation experiment consists in the analysis of the polymer relaxation after a large step strain obtained by squeeze flow. In this method, relaxation is measured by dynamical spectrometry and is characterized by two relaxation times related to LCB. All methods distinguish clearly the group of linear polyethylene from the group of branched polyethylene. However, FTR and Chain orientation/relaxation experiments show a better sensitivity than the van Gurp Palmen plot. Non linear experiments seem suitable to distinguish long branched polyethylene between themselves.

Keywords

Long Chain Branching LCB Fourier Transform Rheology FTR Chain orientation 

References

  1. Baird D., Bortner M., Doerpinghaus P. (2000) Rheological properties of linear and slightly branched metallocene-catalysed LLDPE. XIIIth International Congress on Rheology, UK, Cambridge, 1:228–230Google Scholar
  2. Blackwell R.J., Harlen O.G., McLeish T.C.B. (2001) Theoretical linear and non linear rheology of symmetric treelike polymer melts. Macromolecules 34:2579–2596CrossRefGoogle Scholar
  3. Chai C.K., Creissel J., Randrianantoandro H. (1999) Flow induced birefringence of linear and long chain-branched metallocene polyethelene melts subject to steady start-up flow. Polymer 40:4431–4436CrossRefGoogle Scholar
  4. Chavanne S. (1996) Etude des harmoniques du couple obtenu à partir d’un cisaillement oscillant de grande amplitude. Observation du comportement de deux EPDM. Rapport de DEA, Ecole d’Application des Hauts Polymères (EAHP), StrasbourgGoogle Scholar
  5. Fujimoto T., Narukawa H., Nagasawa M. (1970) Viscoelastic Properties of Comb-Shaped Polystyrenes. Macromolecules 3: 57–64Google Scholar
  6. Garcia-Franco C.A., Srinivas S., Lohse D.J., Brant P. (2001) Similarities between Gelation and Long Chain Branching Viscoelastic Behavior. Macromolecules (Communication) 34:3115–3117Google Scholar
  7. Groves D.J, McLeish T.C.B., Blackwell R.J. (2000) Linear and nonlinear rheology of some model branched polymers. XIIIth International Congress on Rheology, UK, Cambridge, 1:95–97Google Scholar
  8. Hadjichristidis N., Xenidou M., Iatrou H., Pitsikalis M., Poulos Y., Avgeropoulos A., Sioula S., Paraskeva S., Velis G., Lohse D.J., Schulz D.N., Fetters L.J., Wright P.J., Mendelson R.A., Garcia-Franco C.A., Sun T., Ruff C.J. (2000) Well-Defined, Model Long Chain Branched Polyethylene. 1. Synthesis and Characterization. Macromolecules 33 :2424–2436CrossRefGoogle Scholar
  9. Heinrich M., Pyckhout-Hintzen W., Allgaier J., Richter D., Straube E., Read D.J., McLeish T.C.B., Groves D.J., Blackwell R.J., Wiedenmann A. (2002) Arm Relaxation in Deformed H-Polymers in Elongational Flow by SANS. Macromolecules 35: 6650–6664CrossRefGoogle Scholar
  10. Kimura S., Osaki K., Kurata M. (1981) Stress relaxation of polybutadiene at large deformation. Measurements of stress and birefringence in shear and elongation. J. Polym. Sci.: Polym. Phys. Ed. 19:151–163Google Scholar
  11. Lohse D.J., Milner S.T., Fetters L.J., Xenidou M., Hadjichristidis N., Mendelson R.A., Garcia-Franco C.A., Lyon M.K. (2002) Well-Defined, Model Long Chain Branched Polyethylene. 2. Melt Rheological Behavior. Macromolecules 33:2424–2436Google Scholar
  12. MacSporran W.C., Spiers R.P. (1982) The dynamic performance of the Weissenberg rheogoniometer II Large amplitude oscillatory shearing – Fundamental response. Rheol. Acta. 21:184–200. Google Scholar
  13. MacSporran W.C., Spiers R.P. (1984) The dynamic performance of the Weissenberg rheogoniometer III Large amplitude oscillatory shearing – harmonic analysis. Rheol. Acta. 23:90–96Google Scholar
  14. Malmberg A., Kokko E., Lehmus P., Löfgren B., Seppälä J.V. (1998) Long-Chain Branched Polyethene Polymerized by Metallocene Catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO. Macromolecules. 31:8448 – 8454Google Scholar
  15. Malmberg A., Gabriel C., Löfgren B., Steffl T. (2000) Long chain branching in ethene polymerisation with metallocene catalysts. XIIIth International Congress on Rheology, UK, Cambridge, 1:174–176Google Scholar
  16. McLeish T.C.B. (1988) Molecular rheology of H-polymers. Macromolecules 21:1062–1070Google Scholar
  17. McLeish T.C.B., Allgaier J., Bick D.K., Bishko G., Biswas P., Blackwell R., Blottiere B., Clarke N., Gibbs B., Groves D.J., Hakiki A., Heenan R.K., Johnson J.M., Kant R., Read D.J., Young R.N. (1999) Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering. Macromolecules 32: 6734–6758CrossRefGoogle Scholar
  18. Pang S., Rudin A. (1991) SEC assessment of long chain branch frequency in polyethylene. Polym. Mater. Sci. Eng. 65:95–96Google Scholar
  19. Read D.J., McLeish T.C.B. (2001) Molecular rheology and statistics of long chain branched metallocene catalysed polyolefins. Macromolecules 34:1928–1945CrossRefGoogle Scholar
  20. Roovers J. (1984) Melt rheology of H-shaped polystyrenes. Macromolecules 17:1196–1200Google Scholar
  21. Schedenig T., Schausberger A. (2000) Determination of long chain branching by rheology. XIIIth International Congress on Rheology, UK, Cambridge, 1:263–265Google Scholar
  22. Trinkle S., Friedrich C. (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheologica Acta 40:322–328CrossRefGoogle Scholar
  23. Trinkle S., Walter P., Friedrich C. (2002) Van Gurp-Palmen Plot II—classification of long chain branched polymers by their topology. Rheologica Acta 41:103–113CrossRefGoogle Scholar
  24. Van Gurp M., Palmen J. (1998) Time temperature superposition for polymeric blends. Rheol. Bull. 67:5-8Google Scholar
  25. Vega J.F., Fernandez M., Santamaria A., Muñoz-Escalona A., Lafuente P. (1999) Rheological criteria to characterize metallocene catalized polyethylenes. Macromol. Chem. Phys. 200:2257–2268Google Scholar
  26. Wilhelm M., Maring D., Spiess H.W. (1998) Fourier-transform rheology. Rheol. Acta. 37:399–405Google Scholar
  27. Wilhelm M., Reinheimer P., Ortseifer M. (1999) High sensitivity Fourier-transform rheology. Rheol. Acta. 38:349–356Google Scholar
  28. Wilhelm M. (2002) Fourier-transform rheology. Macromol. Mater. Eng. 287: 83–105Google Scholar
  29. Wood-Adams P.M., Dealy J.M., DeGroot W.A., Redwine D.O. (2000) Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene. Macromolecules 33:7489–7499CrossRefGoogle Scholar
  30. Yan D., Wang W.J., Zhu S. (1999) Effect of long chain branching on rheological properties of metallocene polyethylene Polymer 40:1737–1744CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.LIPHT (Laboratoire d’Ingénierie des Polymères pour les Hautes Technologies)ECPM (Ecole Européenne de Chimie Polymères et Matériaux de Strasbourg)StrasbourgFrance

Personalised recommendations