Rheologica Acta

, Volume 42, Issue 5, pp 421–431 | Cite as

Experimental and numerical study of the rotation and the erosion of fillers suspended in viscoelastic fluids under simple shear flow

  • Marianne Astruc
  • Sylvie Vervoort
  • Hervé O. Nouatin
  • Thierry Coupez
  • Yves De Puydt
  • Patrick Navard
  • Edith Peuvrel-DisdierEmail author


When a porous agglomerate immersed in a fluid is submitted to a shear flow, hydrodynamic stresses acting on its surface may cause a size reduction if they exceed the cohesive stress of the agglomerate. The aggregates forming the agglomerate are slowly removed from the agglomerate surface. Such a behaviour is known when the suspending fluid is Newtonian but unknown if the fluid is viscoelastic. By using rheo-optical tools, model fluids, carbon black agglomerates and particles of various shapes, we found that the particles had a rotational motion around the vorticity axis with a period which is independent on shape (flat particles not considered), but which is exponentially increasing with the elasticity of the medium expressed by the Weissenberg number (We). Spherical particles are always rotating for We up to 2.6 (largest investigated We in this study) but elongated particles stop rotating for We>0.9 while orienting along the flow direction. Erosion is strongly reduced by elasticity. Since finite element numerical simulation shows that elasticity increases the local stress around a particle, the origin of the erosion reduction is interpreted as an increase of cohesiveness of the porous agglomerate due to the infiltration of a viscoelastic fluid.


Particle rotation Erosion Viscoelasticity Rheo-optics Finite element method 



The authors wish to thank M. Vincent for stimulating discussions. The work of S. Vervoort was supported by the European Socrates exchange program. The authors thank the referees for interesting comments on the interpretation of the data.


  1. Bagster DF, Tomi D (1974) The stresses within a sphere in simple flow fields. Chem Eng Sci 29:1773–1783CrossRefGoogle Scholar
  2. Bartram E, Goldsmith HL (1975) Particle motions in non-Newtonian media. III. Further observations in elasticoviscous fluids. Rheol Acta 14:776–782Google Scholar
  3. Bohin F, Manas-Zloczower I, Feke DL (1994) Penetration of silicone polymers into silica agglomerates and its influence on dispersion mechanisms. Rubber Chem Technol 67:602–609Google Scholar
  4. Brenner H (1958) Dissipation of energy due to solid particles suspended in a viscous liquid. Phys Fluids 1:338–346Google Scholar
  5. Brenner H (1964) The Stokes resistance of an arbitrary particle. III. Shear fields. Chem Eng Sci 19:631–651CrossRefGoogle Scholar
  6. Bretherton FP (1962) The motion of rigid particles in a shear flow at low Reynolds number. J Fluid Mech 14:284–304Google Scholar
  7. Coupez T, Marie S (1997) From a direct solver to a parallel iterative solver in 3D forming simulation. Int J Supercomput Appl 11:205–211Google Scholar
  8. De Bonhomme G, De Brouwer T (1990) Etude de l’orientation des fibres courtes lors de la mise en oeuvre des matériaux composites. Research report, Université Catholique de LouvainGoogle Scholar
  9. Dizon ES (1976) Processing in an internal mixer as affected by carbon black properties. Rubber Chem Technol 49:12–27Google Scholar
  10. Gauthier F, Goldsmith HL, Mason SG (1971) Particle motions in non-Newtonian media. Rheol Acta 10:344–364Google Scholar
  11. Horwatt SW, Feke DL, Manas-Zloczower I (1992) The influence of structural heterogeneities on the cohesivity and break-up in simple shear flows. Powder Technol 72:113–119CrossRefGoogle Scholar
  12. Iso Y, Cohen C, Koch DL (1996a) Orientation in simple shear flow of semi-dilute fiber suspensions. 2. Highly elastic fluids. J Non-Newtonian Fluid Mech 62:135–153CrossRefGoogle Scholar
  13. Iso Y, Koch DL, Cohen C (1996b) Orientation in simple shear flow of semi-dilute fiber suspensions. 1. Weakly elastic fluids. J Non-Newtonian Fluid Mech 62:115–134CrossRefGoogle Scholar
  14. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc London Ser A 102:161–179Google Scholar
  15. Karnis A, Mason SG (1966) Particle motions in sheared suspensions. IXX. Viscoelastic media. Trans Soc Rheol 10:571–592Google Scholar
  16. Leal LG (1975) The slow motion of slender rod-like particles in a second order fluid. J Fluid Mech 69:305–337Google Scholar
  17. Li Q, Feke DL, Manas-Zloczower I (1995) Influence of aggregate structure and matrix infiltration on the dispersion behavior of carbon black agglomerates. Rubber Chem Technol 68:836–841Google Scholar
  18. Nouatin OH (2000) Méthode et analyse de simulation numérique d’écoulements 3D des polymères fondus. Thèse de Doctorat, Ecole des Mines de Paris, Sophia Antipolis, FranceGoogle Scholar
  19. Pichelin E, Coupez T (1998) Finite element solution of the 3D mold filling problem for viscous incompressible fluid. Comput Methods Appl Mech Eng 163:359–371CrossRefGoogle Scholar
  20. Rumpf H (1962) Agglomeration. WA Knepper, New YorkGoogle Scholar
  21. Rwei SP, Feke DL, Manas-Zloczower I (1990) Observation of carbon black agglomerate dispersion in simple shear flows. Polym Eng Sci 30:701–706Google Scholar
  22. Rwei SP, Feke DL, Manas-Zloczower I (1992) Characterization of agglomerate dispersion by erosion in simple shear flows. Polym Eng Sci 32:130–135Google Scholar
  23. Seyvet O (1999) Etude rhéo-optique de l’imprégnation et de la dispersion d’agglomérats de silice et de noirs de carbone en suspension dans des polymères. Thèse de Doctorat, Ecole des Mines de Paris, Sophia Antipolis, FranceGoogle Scholar
  24. Shiga S, Furuta F (1985) Processability of EPR in an internal mixer (II). Morphological changes of carbon black agglomerates during mixing. Rubber Chem Technol 58:1–22Google Scholar
  25. Yamada H, Manas-Zloczower I, Feke DL (1997) The influence of matrix viscosity and interfacial properties on the dispersion kinetics of carbon black agglomerates. Rubber Chem Technol 71:1–16Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Marianne Astruc
    • 1
  • Sylvie Vervoort
    • 1
  • Hervé O. Nouatin
    • 1
  • Thierry Coupez
    • 1
  • Yves De Puydt
    • 2
  • Patrick Navard
    • 1
  • Edith Peuvrel-Disdier
    • 1
    Email author
  1. 1.Ecole des Mines de Paris, Centre de Mise en Forme des Matériaux (CEMEF)UMR CNRS/Ecole des Mines 7635Sophia AntipolisFrance
  2. 2.Pirelli PneumaticiMilanoItaly

Personalised recommendations