Advertisement

Colloid and Polymer Science

, Volume 298, Issue 2, pp 213–223 | Cite as

Synthesis and characterization of TiO2/acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid nanogel composite and investigation its self-healing performance in the epoxy coatings

  • Erfan Rezvani Ghomi
  • Saied Nouri KhorasaniEmail author
  • Mohsen Karimi Kichi
  • Mohammad Dinari
  • Shahla Ataei
  • Mohammad Hossein Enayati
  • Mohammad Sadegh Koochaki
  • Rasoul Esmaeely NeisianyEmail author
Original Contribution

Abstract

In the present study, the surface of titanium dioxide (TiO2) nanoparticles was modified with superabsorbent gel based on acrylic acid (AA) and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) via in-situ polymerization using 3-(triethoxysilyl) propyl methacrylate (MPS) as a silane coupling agent. The synthesized TiO2 nanogel composite was then incorporated into a commercial epoxy resin in different weight percent (1, 2, and 4) to prepare an effective self-healing epoxy coating. The chemical structure and surface morphology of the prepared nanogel composite were evaluated by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). Furthermore, to calculate the weight ratio of the inorganic to organic materials, the ash content test was employed. The effectiveness of the TiO2 nanogel composite as the self-healing material in the epoxy resin was assessed in 3.5 wt.% NaCl solution by potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS).

Keywords

Self-healing Epoxy coating Titanium dioxide Surface modification Acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mrlik M, Ilcikova M, Sedlacik M, Mosnacek J, Peer P, Filip P (2014) Cholesteryl-coated carbonyl iron particles with improved anti-corrosion stability and their viscoelastic behaviour under magnetic field. Colloid Polym Sci 292(9):2137–2143.  https://doi.org/10.1007/s00396-014-3245-5 CrossRefGoogle Scholar
  2. 2.
    Zhou S, Wu Y, Zhao W, Yu J, Jiang F, Ma L (2018) Comparative corrosion resistance of graphene sheets with different structures in waterborne epoxy coatings. Colloids Surf A Physicochem Eng Asp 556:273–283.  https://doi.org/10.1016/j.colsurfa.2018.08.045 CrossRefGoogle Scholar
  3. 3.
    Vijay Kumar V, Balaganesan G, Lee JKY, Neisiany RE, Surendran S, Ramakrishna S (2019) A review of recent advances in nanoengineered polymer composites. Polymers 11(4):644CrossRefGoogle Scholar
  4. 4.
    Kim J-W, Shim J-W, Bae J-H, Han S-H, Kim H-K, Chang I-S, Kang H-H, Suh K-D (2002) Titanium dioxide/poly(methyl methacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect against UV rays. Colloid Polym Sci 280(6):584–588.  https://doi.org/10.1007/s00396-002-0655-6 CrossRefGoogle Scholar
  5. 5.
    Chen X, SSJCr M (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  6. 6.
    Chau JLH, Tung C-T, Lin Y-M, Li A-K (2008) Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater Lett 62(19):3416–3418.  https://doi.org/10.1016/j.matlet.2008.02.058 CrossRefGoogle Scholar
  7. 7.
    Zhai W, Wu Z-M, Wang X, Song P, He Y, Wang R-M (2015) Preparation of epoxy-acrylate copolymer@nano-TiO2 pickering emulsion and its antibacterial activity. Prog Org Coat 87:122–128.  https://doi.org/10.1016/j.porgcoat.2015.05.019 CrossRefGoogle Scholar
  8. 8.
    Radoman TS, Džunuzović JV, Jeremić KB, Grgur BN, Miličević DS, Popović IG, Džunuzović ES (2014) Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters. Mater Des 62:158–167CrossRefGoogle Scholar
  9. 9.
    Atta AM, Al-Lohedan HA, El-saeed AM, Tawfeek AM, Wahby MHJIJES (2017) Effect of titanium dioxide nanogel surface charges and particle size on anti-corrosion performances of epoxy coatings. Int J Electrochem Sci 12:959–974CrossRefGoogle Scholar
  10. 10.
    Snihirova D, Lamaka SV, Montemor MF (2012) “SMART” protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates. Electrochim Acta 83:439–447.  https://doi.org/10.1016/j.electacta.2012.07.102 CrossRefGoogle Scholar
  11. 11.
    Yeganeh M, Keyvani A (2016) The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings. Prog Org Coat 90:296–303.  https://doi.org/10.1016/j.porgcoat.2015.11.006 CrossRefGoogle Scholar
  12. 12.
    Atta AM, Al-Lohedan HA, El-Saeed AM, Al-Shafey HI, Wahby M (2017) Salt-controlled self-healing nanogel composite embedded with epoxy as environmentally friendly organic coating. J Coat Technol Res 14(5):1225–1236.  https://doi.org/10.1007/s11998-017-9917-6 CrossRefGoogle Scholar
  13. 13.
    Ataei S, Khorasani SN, Torkaman R, Neisiany RE, Koochaki MS (2018) Self-healing performance of an epoxy coating containing microencapsulated alkyd resin based on coconut oil. Prog Org Coat 120:160–166.  https://doi.org/10.1016/j.porgcoat.2018.03.024 CrossRefGoogle Scholar
  14. 14.
    Samadzadeh M, Boura SH, Peikari M, Kasiriha SM, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68(3):159–164.  https://doi.org/10.1016/j.porgcoat.2010.01.006 CrossRefGoogle Scholar
  15. 15.
    Mekeridis ED, Kartsonakis IA, Kordas GC (2012) Multilayer organic–inorganic coating incorporating TiO2 nanocontainers loaded with inhibitors for corrosion protection of AA2024-T3. Prog Org Coat 73(2):142–148.  https://doi.org/10.1016/j.porgcoat.2011.10.005 CrossRefGoogle Scholar
  16. 16.
    Morsi RE, Labena A, Khamis EA (2016) Core/shell (ZnO/polyacrylamide) nanocomposite: in-situ emulsion polymerization, corrosion inhibition, anti-microbial and anti-biofilm characteristics. J Taiwan Inst Chem Eng 63:512–522.  https://doi.org/10.1016/j.jtice.2016.03.037 CrossRefGoogle Scholar
  17. 17.
    Atta AM, El-Saeed AM, Al-Shafey HI, Al-Lohedan HA, Tawfeek AM, Wahbey M (2017) Effect of inorganic nanomaterials types functionalized with smart nanogel on anti-corrosion and mechanical performances of epoxy coatings. Int J Electrochem Sci 12(2):1167–1182CrossRefGoogle Scholar
  18. 18.
    Atta A, Al-Lohedan H, Tawfeek A, Abdel-Khalek A (2016) Preparation and characterization of amphiphilic titanium dioxide nanogel composites with high performance in water treatment. Dig J Nanomater Biostruct 11(1):91–104.Google Scholar
  19. 19.
    Atta AM, El-Saeed AM, Al-Lohedan HA, Wahby M (2017) Effect of montmorillonite nanogel composite fillers on the protection performance of epoxy coatings on steel pipelines. Molecules 22(6):905CrossRefGoogle Scholar
  20. 20.
    Atta AM, Al-Lohedan HA, El-saeed AM, Al-Shafey HI, Wahby MH (2017) Epoxy embedded with TiO2 nanogel composites as promising self-healing organic coatings of steel. Prog Org Coat 105:291–302.  https://doi.org/10.1016/j.porgcoat.2017.01.009 CrossRefGoogle Scholar
  21. 21.
    Sheng X, Xie D, Wang C, Zhang X, Zhong L (2016) Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres. Colloid Polym Sci 294(2):463–469.  https://doi.org/10.1007/s00396-015-3807-1 CrossRefGoogle Scholar
  22. 22.
    Jamshidi H, Rabiee A (2014) Synthesis and characterization of acrylamide-based anionic copolymer and investigation of solution properties. Adv Mater Sci Eng 2014:6.  https://doi.org/10.1155/2014/728675 CrossRefGoogle Scholar
  23. 23.
    Zhu L, Zhang L, Tang Y (2012) Synthesis of montmorillonite/poly (acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) superabsorbent composite and the study of its adsorption. Bull Kor Chem Soc 33(5):1669–1674CrossRefGoogle Scholar
  24. 24.
    Rosa F, Bordado J, Casquilho M (2002) Kinetics of water absorbency in AA/AMPS copolymers: applications of a diffusion–relaxation model. Polymer 43(1):63–70.  https://doi.org/10.1016/S0032-3861(01)00596-1 CrossRefGoogle Scholar
  25. 25.
    Koochaki MS, Khorasani SN, Neisiany RE, Ashrafi A, Magni M, Trasatti SPJMRE (2019) Facile strategy toward the development of a self-healing coating by electrospray method. Mater Res Express 6(11):116444CrossRefGoogle Scholar
  26. 26.
    Safaei F, Khorasani SN, Rahnama H, Neisiany RE, Koochaki MS (2018) Single microcapsules containing epoxy healing agent used for development in the fabrication of cost efficient self-healing epoxy coating. Prog Org Coat 114:40–46.  https://doi.org/10.1016/j.porgcoat.2017.09.019 CrossRefGoogle Scholar
  27. 27.
    Khosravi F, Nouri Khorasani S, Rezvani Ghomi E, Kichi MK, Zilouei H, Farhadian M, Esmaeely Neisiany R (2019) A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance. Mater Res Express 6(8):086470.  https://doi.org/10.1088/2053-1591/ab26d5 CrossRefGoogle Scholar
  28. 28.
    Aravindan V, Vickraman P (2009) Synthesis and characterization of LiBOB-based PVdF/PVC-TiO2 composite polymer electrolytes. Polym Eng Sci 49(11):2109–2115.  https://doi.org/10.1002/pen.21463 CrossRefGoogle Scholar
  29. 29.
    Shen GX, Chen YC, Lin CJ (2005) Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489(1):130–136.  https://doi.org/10.1016/j.tsf.2005.05.016 CrossRefGoogle Scholar
  30. 30.
    Pawar SG, Chougule MA, Sen S, Patil VB (2012) Development of nanostructured polyaniline–titanium dioxide gas sensors for ammonia recognition. J Appl Polym Sci 125(2):1418–1424.  https://doi.org/10.1002/app.35468 CrossRefGoogle Scholar
  31. 31.
    El-Mahdy G, Atta A, Al-Lohedan H, Tawfeek A, Abdel-Khalek AA (2015) Synthesis of encapsulated titanium oxide sodium 2-acrylamido-2-methylpropan sulfonate nanocomposite for preventing the corrosion of steel. Int J Electrochem Sci 10:5702–5713Google Scholar
  32. 32.
    Rong M, Zhang M, Ruan W (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22(7):787–796CrossRefGoogle Scholar
  33. 33.
    Lu Y, Zhou S, Wu L (2012) De-agglomeration and dispersion behavior of TiO2 nanoparticles in organic media using 3-methacryloxypropyltrimethoxysilane as a surface modifier. J Dispers Sci Technol 33(4):497–505.  https://doi.org/10.1080/01932691.2011.574912 CrossRefGoogle Scholar
  34. 34.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82.  https://doi.org/10.1016/j.carbpol.2010.10.061 CrossRefGoogle Scholar
  35. 35.
    Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 401:97–106.  https://doi.org/10.1016/j.colsurfa.2012.03.031 CrossRefGoogle Scholar
  36. 36.
    Atta AM, El-Azabawy OE, Ismail HS, Hegazy MA (2011) Novel dispersed magnetite core–shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros Sci 53(5):1680–1689.  https://doi.org/10.1016/j.corsci.2011.01.019 CrossRefGoogle Scholar
  37. 37.
    Avico L, Beltrami R, Lecis N, Trasatti PS (2018) Corrosion behavior and surface properties of PVD coatings for mold technology applications. Coatings 9(1).  https://doi.org/10.3390/coatings9010007 CrossRefGoogle Scholar
  38. 38.
    Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383.  https://doi.org/10.1016/j.polymer.2015.04.086 CrossRefGoogle Scholar
  39. 39.
    Hasanzadeh M, Shahidi M, Kazemipour M (2015) Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles. Prog Org Coat 80:106–119.  https://doi.org/10.1016/j.porgcoat.2014.12.002 CrossRefGoogle Scholar
  40. 40.
    Yeganeh M, Asadi N, Omidi M, Mahdavian M (2019) An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor. Prog Org Coat 128:75–81.  https://doi.org/10.1016/j.porgcoat.2018.12.022 CrossRefGoogle Scholar
  41. 41.
    Hegazy MA (2009) A novel Schiff base-based cationic gemini surfactants: synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution. Corros Sci 51(11):2610–2618.  https://doi.org/10.1016/j.corsci.2009.06.046 CrossRefGoogle Scholar
  42. 42.
    Yu Z, Di H, Ma Y, He Y, Liang L, Lv L, Ran X, Pan Y, Luo Z (2015) Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surf Coat Technol 276:471–478.  https://doi.org/10.1016/j.surfcoat.2015.06.027 CrossRefGoogle Scholar
  43. 43.
    Neuser S, Chen PW, Studart AR, Michaud V (2014) Fracture toughness healing in epoxy containing both epoxy and amine loaded capsules. Adv Eng Mater 16(5):581–587.  https://doi.org/10.1002/adem.201300422 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Erfan Rezvani Ghomi
    • 1
    • 2
  • Saied Nouri Khorasani
    • 1
    Email author
  • Mohsen Karimi Kichi
    • 3
  • Mohammad Dinari
    • 4
  • Shahla Ataei
    • 5
  • Mohammad Hossein Enayati
    • 3
  • Mohammad Sadegh Koochaki
    • 1
  • Rasoul Esmaeely Neisiany
    • 6
    Email author
  1. 1.Department of Chemical EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical Engineering, Center for Nanofibres and NanotechnologyNational University of SingaporeSingaporeSingapore
  3. 3.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  4. 4.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  5. 5.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  6. 6.Department of Materials and Polymer Engineering, Faculty of EngineeringHakim Sabzevari UniversitySabzevarIran

Personalised recommendations