Association behavior and fluorescence quenching between cationic zinc porphyrin pendant groups on water-soluble polymers and anionic iron porphyrin guests

  • Kewei DingEmail author
  • Hongli Liu
  • Min Zhang
  • Chenxi Qu
  • Zhongxue Ge
  • Taoqi Li


An amphiphilic cationic tripyridiniumylporphyrin monomer, i.e., ZnTrMPyP, was synthesized and copolymerized with acrylamide in water and dimethyl sulfoxide, respectively, to prepare the water-soluble random copolymer P-D and microblock copolymer P-W. The association behavior and fluorescence quenching between the copolymers and tetra(p-sulfonato phenyl)porphyrin (Fe(III)TSPP(Cl)) were studied via absorption and emission spectra. The results showed that relatively discrete pendant groups of ZnTrMPyP within P-D could form a ground state complex with FeTSPP by electrostatic interactions, and both static and dynamic mechanisms were active in this quenching process. In contrast, the microblock porphyrin pendant groups within P-W interacted with FeTSPP as an entity, and static quenching was dominant in this process. Salt effects on the formation of the copolymers and FeTSPP complex were also investigated through the addition of KNO3, and the results showed that this association can be weakened by the electrostatic shielding effect, and the fluorescence quenching constant could be reduced.


Porphyrin Water-soluble polymer Association behavior Fluorescence quenching 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 21502148).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Pettersson K, Kilsa K, Martensson J, Albinsson B (2004) Intersystem crossing versus electron transfer in porphyrin-based donor bridge acceptor systems: influence of a paramagnetic species. J Am Chem Soc 126:6710–6719PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Chen LX, Lee PL, Gosztola D, Svec WA, Montano PA, Wasielewski MR (1999) Time-resolved X-ray absorption determination of structural changes following photoinduced electron transfer within bis-porphyrin heme protein models. J Phys Chem B 103:3270–3274CrossRefGoogle Scholar
  4. 4.
    McGourty JL, Blough NV, Hoffman BM (1983) Electron transfer at crystallographically known long distances (25 A) in [ZnII, FeIII] hybrid hemoglobin. J Am Chem Soc 105:4412–4413CrossRefGoogle Scholar
  5. 5.
    Grodkowski J, Neta P (2000) Ferrous ions as catalysts for photochemical reduction of CO2 in homogeneous solutions. J Phys Chem A 104:4475–4479CrossRefGoogle Scholar
  6. 6.
    McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRefGoogle Scholar
  7. 7.
    van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ, Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285:400–402PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Nowakowska M, Karewicz A, Loukine N, Guillet JE (2002) Studies of the antenna effect in polymer molecules. 29. Synthesis and properties of poly[sodium styrene sulfonate-co-(4-acryolyloxyphenyl)-10,15,20-tritolylporphyrin] in aqueous solution. Polymer 43:2003–2009CrossRefGoogle Scholar
  9. 9.
    Kamachi M, Cheng XS, Kida T, Kajiwara A, Shibasaka M, Nagata S (1987) Synthesis of new polymers containing porphyrins in their side chains: radical polymerizations of 5-[4-(acryloyloxy)phenyl]-10,15,20-triphenylporphyrin and 5-[4-(methacryloyloxy)phenyl]-10,15,20-triphenylporphyrin. Macromolecules 20:2665–2669CrossRefGoogle Scholar
  10. 10.
    Konishi T, Ikeda A, Asai M, Hatano T, Shinkai S, Fujitsuka M, Ito O, Tsuchiya Y, Kikuchi JI (2003) Improvement of quantum yields for photoinduced energy/electron transfer by isolation of self-aggregative Zinc tetraphenyl porphyrin-pendant polymer using cyclodextrin inclusion in aqueous solution. J Phys Chem B 107:11261–11266CrossRefGoogle Scholar
  11. 11.
    Li M, Zhao LZ, Zhang YC, Liu MM, Ye H, Zhang YZ, Chen X (2015) Adsorption behavior and self-aggregation of 5,10,15,20-tetrakis- (4-sulfonatophenyl)-porphyrin on quaternized polysulfone membrane. Colloid Polym Sci 293:513–522CrossRefGoogle Scholar
  12. 12.
    Morishima Y, Saegusa K, Kamachi M (1995) Anomalously blue-shifted fluorescence and phosphorescence of zinc(II) tetraphenylporphyrin in highly constraining microenvironments in hydrophobically modified polysulfonates. Macromolecules 28:1203–1207CrossRefGoogle Scholar
  13. 13.
    Morishima Y, Saegusa K, Kamachi M (1995) Photophysical behavior of zinc(II) tetraphenylporphyrin in highly constraining microenvironments. anomalously long-lived excited-triplet in the hydrophobic clusters of amphiphilic polysulfonates. J Phys Chem 99:4512–4517CrossRefGoogle Scholar
  14. 14.
    Morishima Y, Aota H, Saegusa K, Kamachi M (1996) Long-lived porphyrin cation radicals protected in unimer micelles of hydrophobically-modified polyelectrolytes. Macromolecules 29:6505–6509CrossRefGoogle Scholar
  15. 15.
    Chai ZH, Jing C, Liu Y, An YL, Shi LQ (2014) Spectroscopic studies on the photostability and photoactivity of metallo- tetraphenylporphyrin in micelles. Colloid Polym Sci 292:1329–1337CrossRefGoogle Scholar
  16. 16.
    Ding KW, Wang F, Wu FP (2011) The formation of a slipped cofacial dimer of zinc (II) tripyridylporphyrin in water-soluble polymer. J Photochem Photobiol A 220:64–69CrossRefGoogle Scholar
  17. 17.
    Kuciauskas D, Caputo GA (2009) Self-assembly of peptide−porphyrin pomplexes leads to pH-dependent excitonic coupling. J Phys Chem B 113:14439–14447PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kuciauskas D, Kiskis J, Caputo GA, Gulbinas V (2010) Exciton annihilation and energy transfer in self-assembled peptide−porphyrin complexes depends on peptide secondary structure. J Phys Chem B 114:16029–16035PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen XD, Liu MH (2003) Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. J Inorg Biochem 94:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Li JB, Zhang JK, Liu P, Liang J, Feng SX (2011) Polyion micelles with diphase-segregated core: electrostatic self-assembly of poly(ethylene glycol)-block-poly (4-vinylpyridium) and tetrakis (4-sulfonatophenyl)porphyrin in solution. Colloid Polym Sci 289:193–198CrossRefGoogle Scholar
  21. 21.
    Li A, Zhao LZ, Hao J, Tao Q, Ma RJ, Zhang ZK, An YL, Shi LQ (2013) A strategy to stabilize the confined chiral TPPS J-aggregate by ionic block copolymer. Colloid Polym Sci 291:2975–2984CrossRefGoogle Scholar
  22. 22.
    Nowakowska M, Karewicz A, Kłos M, Zapotoczny S (2003) Synthesis and properties of water-soluble poly(sodium styrenesulfonate-block-5-(4-acryloyloxyphenyl)-10,15,20-tritolylporphyrin) by nitroxide-mediated free radical polymerization. Macromolecules 36:4134–4139CrossRefGoogle Scholar
  23. 23.
    Satake A, Kobuke Y (2005) Dynamic supramolecular porphyrin systems. Tetrahedron 61:13–41CrossRefGoogle Scholar
  24. 24.
    Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C (2009) Supramolecular chemistry of metalloporphyrins. Chem Rev 109:1659–1713PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhou QF, Zhu XL, Wen ZQ (1989) Liquid-crystalline side-chain polymers without flexible spacer. Macromolecules 22:491–493CrossRefGoogle Scholar
  26. 26.
    Ding KW, Wang F, Wu FP (2012) Association behavior of porphyrin pendant groups in pH-sensitive water-soluble polymer. Chin J Polym Sci 30:63–71CrossRefGoogle Scholar
  27. 27.
    Ding KW, Li TQ, Ge ZX, Bu JH, Liu Y (2018) The sequential structure of tripyridiniumylporphyrin pendant groups in water-soluble copolymers and their association behaviour with tetrasulfonatophenylporphyrin guests: UV-vis absorption and fluorescence emission spectra study. RSC Adv 8:35759–36767CrossRefGoogle Scholar
  28. 28.
    Li SJ, Wu FP, Wang EJ (2009) A water-soluble supramolecular structured photosensitive initiation system: Me-b-CD complex of xanthene dye/aryliodonium salt. Polymer 50:3932–3937CrossRefGoogle Scholar
  29. 29.
    Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Forster and Dexter energy transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543CrossRefGoogle Scholar
  30. 30.
    Makarska-Bialokoz M (2019) A Lipke study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. J Mol Liq 276:595–604CrossRefGoogle Scholar
  31. 31.
    Makarska-Bialokoz M (2017) Investigation of the binding affinity in vitamin B12—bovine serum albumin system using various spectroscopic methods. Spectrochim Acta A 184:262–269CrossRefGoogle Scholar
  32. 32.
    Makarska-Bialokoz M (2018) Interactions of hemin with bovine serum albumin and human hemoglobin: a fluorescence quenching study. Spectrochim Acta A 193:23–32CrossRefGoogle Scholar
  33. 33.
    Makarska-Bialokoz M (2015) Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins. J Mol Struct 1081:224–232CrossRefGoogle Scholar
  34. 34.
    Makarska M, Radzki S, Legendziewicz J (2002) Spectroscopic characterization of the water-soluble cationic porphyrins and their complexes with Cu(II) in various solvents. J Alloys Compd 341:233–238CrossRefGoogle Scholar
  35. 35.
    Zimmermann J, Siggel U, Fuhrhop J-H, Roder B (2003) Excitonic coupling between B and Q transitions in a porphyrin aggregate. J Phys Chem B 107:6019–6021CrossRefGoogle Scholar
  36. 36.
    Balaban TS, Linke-Schaetzel M, Bhise AD, Vanthuyne N, Roussel C (2004) Green self-assembling porphyrins and chlorins as mimics of the natural bacteriochlorophylls c, d, and e. Eur J Org Chem 2004:3919–3930CrossRefGoogle Scholar
  37. 37.
    Polowiński S (2002) Template polymerization and co-polymerization. Prog Polym Sci 27:537–577CrossRefGoogle Scholar
  38. 38.
    Peiffer DG (1990) Hydrophobically associating polymers and their interactions with rod-like micelles. Polymer 31:2353–2360CrossRefGoogle Scholar
  39. 39.
    Schulz DN, Kaladas JJ, Maurer JJ, Bock J, Pace SJ, Schulz WW (1987) Copolymers of acrylamide and surfactant macromonomers: synthesis and solution properties. Polymer 28:2110–2115CrossRefGoogle Scholar
  40. 40.
    Hill A, Candau F, Selb J (1993) Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis. Macromolecules 26:4521–4532CrossRefGoogle Scholar
  41. 41.
    Kalyanasundaram K, Neumann-Spallart M (1982) Photophysical and redox properties of water-soluble porphyrins in aqueous media. J Phys Chem 86:5163–5169CrossRefGoogle Scholar
  42. 42.
    Batinić-Haberle I, Spasojević I, Hambright P, Benov L, Crumbliss AL, Fridovich I (1999) Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem 38:4011–4022CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kewei Ding
    • 1
    • 2
    Email author
  • Hongli Liu
    • 1
  • Min Zhang
    • 1
  • Chenxi Qu
    • 1
  • Zhongxue Ge
    • 1
    • 2
  • Taoqi Li
    • 1
  1. 1.Xi’an Modern Chemistry Research InstituteXi’anChina
  2. 2.State Key Laboratory of Fluorine & Nitrogen ChemicalsXi’anChina

Personalised recommendations